

Project Technical Summary

Title	Identification of naturally-occurring fluoride and selected metals in northwest Wisconsin
	groundwater
Project	DNR-235
Identification	
Investigators	Kelsey Prihoda, Assistant Scientist, Lake Superior Research Institute (LSRI), University of
	Wisconsin-Superior (UWS)
	Christine Polkinghorne, Assistant Scientist, LSRI, UWS
	Thomas Markee, Senior Scientist, LSRI, UWS
Period of Contract	01 July 2018 to 30 June 2020
Background	Northwest Wisconsin, encompassing the 11 counties of Ashland, Barron, Bayfield, Burnett,
	Douglas, Iron, Polk, Price, Rusk, Sawyer, and Washburn, has a large proportion of the
	population who obtain their drinking water from groundwater. There are over 56,000
	public and private wells within this region of the state, however, the region is under-
	studied in terms of groundwater quality relative to other areas in Wisconsin. Groundwater
	in northwestern Wisconsin may not be as impacted by anthropogenic contaminants as in
	other areas of the state, but within the last decade commercial interest in the region's
	natural resources have led to actual and proposed large-scale land-use changes that have
	the potential to impact groundwater quality. A comprehensive set of baseline data are
	needed in order to measure long-term groundwater quality changes. In a survey of
	residents within four northwest Wisconsin counties conducted by Northland College
	(Ashland, WI) in May and June 2016, 29% of respondents were unsure of the source of
	their drinking water and 84% had never searched for information on their drinking water
	quality. It is increasingly important to reverse this trend, and to expand residents' overall
	awareness of groundwater quality.
	enough concentrations in groundwater, could impact public health. Little is known
	regarding baseling concentrations of these notantial contaminants in porthwestern
	Wisconsin aquifers. Eluoride is a naturally-occurring inorganic ion, which has a narrow
	range of the range utic concentrations. Iron, manganese, aluminum, and arsenic are
	naturally-occurring metals that could be present in groundwater depending upon the
	underlying geology and water quality of the aquifer Lead is introduced to well water most
	commonly by corrosion of lead-containing nlumbing fixtures or well components but
	may also be leached from lead-containing minerals naturally occurring in aquifers when
	groundwater has $pH < 6$ or $pH > 11$ with little to no carbonate present.
Ohiectives	The objectives of this study, known as the Northwest Wisconsin Groundwater Monitoring
	<i>Project</i> , were to monitor naturally-occurring fluoride concentrations in groundwater
	samples collected from 11 counties in northwestern Wisconsin, determine concentrations
	of iron, manganese, aluminum, arsenic, and lead in a subset of these samples, foster
	public awareness among residents of the region about the need for regular private well
	testing, and increase the publicly-available groundwater data within the region.
Methods	This monitoring study used a random sample design, and targeted 704 fluoride samples
	and 115 metals samples total. All of the samples were collected by volunteers who were
	recruited to participate in the project through a combination of social media postings,
	press releases, and outreach events. Sample kits containing sample bottles, instructions
	for collection, sample collection form, and a pre-paid shipping label were assembled and
	delivered to each of 26 distribution sites located throughout the 11-county study area.
	Samples were collected into 125-mL, wide-mouth containers that were pre-cleaned to
	meet or exceed EPA requirements for drinking water. Volunteers were asked to collect a

1

	sample into the provided bottle(s) after running cold water at a high flow rate for at least
	five minutes, and return the collected sample(s) to UWS-LSRI within 14 days of collection.
	Upon receipt of sample kits at LSRL a sample receipt checklist was completed by project
	staff and metals samples were preserved using trace metal grade nitric acid to $nH<2$ An
	attempt was made to locate the well record for each of the sample(s) received
	Eluorido analysis was conducted using High Performance Ion Chromatography following
	Fluoride analysis was conducted using Fight Performance for Chromatography following
	o.s. EPA Method Sol. (1995). Analysis of the five metals studied for this project was
	conducted using Atomic Absorption Spectrometry. Samples analyzed for Iron and
	manganese were analyzed by flame, while aluminum, arsenic, and lead were analyzed by
	graphite furnace. Data were summarized using MS Excel and mapped using ArcGIS Online.
	Results were reported to volunteers, and were presented at a series of public
	presentations held throughout the study area.
Results and	The data from 450 of 704 fluoride and 80 of 115 metals samples were reported. Samples
Discussion	were collected from all 11 counties in the study area, and were largely collected from
	drilled wells constructed 26 – 50 years ago, with a depth of 51 – 100 feet. None of the
	samples collected and analyzed for fluoride exceeded the state Enforcement Standard of
	4.0 mg/L and less than 1% exceeded the Preventative Action Limit of 0.8 mg/L (Wis. Adm.
	Code Ch. NR 140). Iron concentrations were high in a number of samples, with 20% of
	samples collected exceeding the 0.3 mg/L Enforcement Standard. In 5% of samples
	collected, the Enforcement Standard for manganese, 300 µg/L, was exceeded. Overall,
	aluminum concentrations were low throughout the study area, but one sample exceeded
	the Enforcement Standard of 200 µg/L. The maximum arsenic concentration measured in
	this study was 10.0 μ g/L, which is the state Enforcement Standard, However, 38.8% of
	samples had an arsenic concentration at or above the Preventative Action Limit $(1 \mu g/L)$
	There was a single sample that exceeded the Enforcement Standard for lead (15 μ g/L) and
	11.3% of samples had a lead concentration at or above the 1.5 μ g/L Preventative Action
	Limit
Conclusions and	To the authors' knowledge, this study represents the first baseline groundwater
Conclusions and	To the authors' knowledge, this study represents the first baseline groundwater
Recommendations	monitoring errort encompassing the northwest wisconsin region. With the exception of
	fluoride and arsenic, the Enforcement Standard was exceeded for all parameters
	measured in this study in at least one sample collected within the study area. Based on the
	results from this study, most children residing in northwest Wisconsin whose primary
	drinking water source is groundwater would need fluoride supplementation for the
	prevention of dental caries. However, higher levels of fluoride were measured in Ashland,
	Douglas, and Iron counties, and it is recommended that families residing in those counties
	have the fluoride concentration in their private wells tested. This study utilized a random
	sample design, and the next logical step is to conduct targeted sampling of areas with
	contaminant-level metals concentrations in groundwater samples. Due to the number of
	fluoride samples collected in this study, additional fluoride sampling is not necessary.
	However, it is highly recommended that additional, targeted sampling of iron, manganese,
	aluminum, arsenic and lead be conducted on wells for which a well record exists so that
	correlations may be made between well characteristics and sample analysis results. It may
	be beneficial to target additional naturally-occurring compounds, such as radium and
	radon.
Key Words	Fluoride, iron, manganese, aluminum, iron, lead, northwest Wisconsin, citizen science
	Eunding for this work was provided by the Wisconsin Dopartment of Natural Pescurses via
Funaing	the Wisconsin Groundwater Coordinating Council
1	ן נופ אוזכטוזוו טוטעוועאמנפו כטטועוומנווצ כטעווכוו.

2

-