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PROJECT SUMMARY 
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Background/Need: Calcareous fens (referred hereafter as ‘fens’) are unique and often isolated 

ecosystems of high conservation value in Wisconsin because they provide habitat for many rare plant and 

animal species. Their identity is strongly linked to a dependence on a consistent discharge of groundwater 

that saturates the surface for most of the growing season. Thus, they are particularly susceptible to 

decreases in groundwater inputs from activities such as nearby pumping. Fen identification and 

monitoring has traditionally relied upon expert plant taxonomic knowledge and ground-based field work, 

which can be costly, time-consuming, and limited in temporal and spatial extent. In contrast, remote 

sensing can be used to identify, monitor, and map plant characteristics across a large spatial extent in a 

repeatable and consistent manner. In particular, the field of imaging spectroscopy using hyperspectral 

sensors has matured to the point where biophysical traits relevant to identifying specific plant community 

types and monitoring ecosystem quality can be readily quantified. 

 

Objectives: The overall goal of this research was to develop a framework for identifying and monitoring 

groundwater-dependent fen ecosystems using biophysically-relevant spectral characteristics obtained 

using airborne imaging spectroscopy so that ecosystem impacts of reduced groundwater inputs can be 

quantified and mapped. The main objective was to link floristic quality and other site variables of 

groundwater-dependent calcareous fens to spectrometry of fen foliage, so that these traits can be 

determined remotely and mapped across large areas. 

 

Methods: We collected site variables and floristic quality data needed to serve as ground truth, such as 

water table elevations, soil nutrients, foliar chemistry, and weighted floristic quality index (WFQI) at 20 

test plots at each of six calcareous fens. We determined how all the site variables and floristic quality were 

correlated, and then used Partial Least Squares Regression (PLSR) to link site variables and floristic 

quality to spectrometry of dried/ground foliage samples collected from the test plots as well as 

spectrometry of the six fen sites remotely using an airborne hyperspectral imager (HySpex). We 

developed a processing technique that uses stability of PLSR predictor variables to optimize model 

predictive ability, as well as identify site variables and spectral wavelengths of special significance in 

predicting floristic quality. 

iv 



 

Results and Discussion: We determined that foliar nutrients, hydrology, and soil chemistry are well 

correlated with floristic quality metrics, which is consistent with our mechanistic understanding of how 

fens are defined. Incorporation of these floristic, hydrologic, and soil factors into models of floristic 

quality of fens yielded our highest model performance when predicting floristic quality of fens. The 

correlation between foliar nutrients (such as phosphorus) and floristic quality is especially revealing 

because this represents our mechanistic link from groundwater-dependent ecosystems to the predictive 

power of spectral data; consistent with previous research we developed robust models to predict foliar 

nutrients using lab-based spectra. We then were able to extend this mechanistic link by developing robust 

models to predict floristic quality from lab-based spectra. Finally, this cascade of tight relationships 

(hydrology-->floristic quality-->foliar nutrients-->spectra) allowed us to create predictive models from 

airborne spectroscopic images and map floristic quality across large, spatially continuous areas. 

 

Conclusions/Implications/Recommendations: These findings have several important implications. 

First, our research adds to the body of literature regarding which factors affect fen floristic quality, which 

has important implications regarding how to monitor and protect these rare ecosystems. Second, the 

spectroscopic methods developed here for assessing floristic quality are relatively efficient when 

compared to the traditional approaches of assessing floristic quality of fens over large areas, such as the 

time-meander approach with a team of fen expert botanists. With an appropriately calibrated model, 

several large regions can be imaged in a single flight with better than 1m spatial resolution, with perhaps 

hundreds of miles separating fen sites. Thus, fens can be consistently and efficiently monitored. Third, the 

ability to map fen floristic quality across extensive areas provides managers a unique and valuable way to 

monitor hydrologic change as fens can be viewed as sentinel ecosystems that are quick to respond to 

subtle changes in groundwater. We have shown that a high and consistent water table is critical to the 

floristic quality of fens, and that when groundwater conditions of a fen change, the floristic quality 

deteriorates rapidly. Thus, since we can detect the changes in floristic quality readily, we can also detect 

that it is highly likely that the groundwater regime has been altered. 

 

These findings lead us to recommend further exploration of the feasibility of incorporating these fen 

floristic quality mapping techniques into ongoing groundwater and ecosystem monitoring programs at the 

WDNR. We see these maps being useful in at least two ways: 1) identifying unknown locations of fen 

ecosystems, where such knowledge can play a key role in conservation of these rare ecosystems, and 2) 

continuous (every 1-2 years) monitoring to assess changes in hydrology and the associated impacts on fen 

floristic quality. This further exploration would also need to include continued research and refinement of 

the methods developed by this project. For instance, the effects of seasonality and the presence of 

particular species of fen vegetation on model performance should be investigated. However, results from 

this project clearly show that airborne-based imaging spectroscopy is a viable tool for monitoring subtle 

changes in groundwater and fen ecosystem health. 

 

Related Publications: none at time of submission 

 

Key Words: wetland, fen, drawdown, vegetation, spectroscopy, remote sensing, ecosystem 

 

Funding: University of Wisconsin – System, U.S. Geological Survey 
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INTRODUCTION 

 

Calcareous fens (referred hereafter as ‘fens’) are unique and often isolated ecosystems of high 

conservation value in Wisconsin because they provide habitat for many rare plant and animal species. 

Their identity is inextricably linked to a dependence on a consistent discharge of groundwater that 

saturates the surface for most of the growing season, leading to the accumulation of carbon as peat or tufa. 

As a result of calcium-rich groundwater being the main water source to these wetlands and ensuing 

chemical reactions (precipitation), the availability of nutrients (e.g. nitrogen and phosphorus) is quite low 

(Fig. 1). The consistent saturation and low-nutrient stresses result in high native plant diversity including 

very high rare species richness compared to other ecosystems [1–3]. Decreases in the saturation stress by 

reduced groundwater inputs (e.g. from nearby pumping) can result in substantial and potentially 

irreversible ecosystem change [4]. Thus, fens can be viewed as ‘sentinel ecosystems’ that may indicate 

subtle changes to groundwater conditions. 
 

Fen identification and monitoring has traditionally relied 

upon expert plant taxonomic knowledge and ground-

based field work, which can be costly, time-consuming, 

and limited in temporal and spatial extent. In contrast, 

remote sensing can be used to identify, monitor, and map 

plant characteristics across a large spatial extent in a 

repeatable and consistent manner. In particular, the field 

of imaging spectroscopy using hyperspectral sensors has 

matured to the point where biophysical traits relevant to 

identifying plant community types and monitoring 

ecosystem quality can be readily quantified [5-6].  

 

In this project our overall goal was to develop a 

framework for identifying and monitoring groundwater-

dependent fen ecosystems using biophysically-relevant 

spectral characteristics obtained with airborne imaging 

spectroscopy so that ecosystem impacts of reduced 

groundwater inputs can be quantified and mapped. The basic scheme of our approach involved collection 

and analysis of ground-based field data, collection and analysis of spectroscopic data, and linking of the 

two through statistical models. We focused our data collection on six fen sites that were intensively 

monitored for vegetation, hydrology, and soil properties as part of a project funded by the Environmental 

Protection Agency from 2016-2017. Paired sites are located in southeastern Wisconsin, the Madison area, 

and the Central Sands (Fig. 2). One of each pair is relatively pristine and the other is likely impacted by a 

decrease in groundwater inputs. Here we continued and expanded that ground monitoring through 2018 

and collected new lab-based spectroscopic data and airborne hyperspectral imagery. 

 

PROCEDURES AND METHODS 

 

Overview 

Our procedure involved first, maintaining and expanding a network of hydrologic and soil monitoring 

equipment to characterize the groundwater and edaphic regimes at 20-25 plots at and around each of six 

fens (Fig. 2). Second, we captured imagery at each site and surrounding area using an airborne 

hyperspectral sensor owned by the University of Wisconsin – Madison. Third, at each plot, we assessed 

floristic quality and took foliage/soil samples. Fourth, we dried and ground a portion of each foliage 

sample for lab-based spectroscopic analysis and had the rest of the samples analyzed for nutrients and 

various chemical properties at the UW Soil and Forage Lab. Fifth, we developed statistical relationships 

between all types of ground-based field data and floristic quality. Sixth, we used the lab-based 

 
Figure 1: “A calcareous fen is an ecosystem 

whose hydrology is strongly and steadily 

controlled by high-mineral groundwater input, 

whose soils sequester carbon as both organic 

matter and carbonates, and whose vegetation is 

adapted to these edaphic conditions." 

(Carpenter, 1995) [7] 

 

1 



 

spectroscopy and airborne-collected reflectance imagery to determine statistical relationships between 

various spectral metrics and site variables including metrics of floristic quality. Seventh, we mapped out 

leaf biophysical traits and overall floristic quality. Finally, we determined pertinent spectral metrics that 

can be used to assess the quality and hydrology of existing fens. 
 

Field Data Collection / 

Processing 

We built upon field data 

collected by Bart et al [8] 

as part of an EPA study 

from 2016-2017 by 

continuing collection of 

site foliar (f_), hydrologic 

(h_), and soils (s_) data 

(parenthetical information 

indicates nomenclature of 

site variables of these 

types). That data included 

detailed Floristic Quality 

Assessment (FQA) of 20 

test plots at each of our six 

fens in 2016. Continuous 

loggers at the core area of each fen also recorded weather, soil moisture, water table elevation, and soil 

electrical conductivity. Monthly hydrologic sampling at the twenty test plots at each fen included water 

table elevation (h_WTmed), piezometric head at 0.5m and 1.0m depth, from which we obtained hydraulic 

gradient (h_HGmed), and hand probe data of soil moisture (h_WCmed) and conductivity (h_ECmed). 

From the monthly samples we obtained the median, and standard deviation at each plot (e.g. h_WTmed 

and h_WTstd). For the present study, we continued all of these measurements through 2018. We also 

installed 2-5 new plots per fen around the periphery of the fens and collected the same data at these plots 

for 2017 and 2018. Soils were sampled in 2016 for nutrients (N and P), and we also collected additional 

soil samples at each plot in 2018, which we analyzed for pH, organic matter, calcium, ammonia, nitrate 

and phosphorus. We also collected a species abundance proportional clip sample of vegetation growing 

within each test plot, and dried and ground those samples to 2.0 mm using a "Wiley Mill". 
 

Floristic Quality Assessment 

We determined three separate floristic quality metrics. Firstly, a 1m x 1m test plot was established next to 

each monitoring well using a quadrat. Each test plot was visited monthly throughout the 2016 growing 

season and detailed observations of all herbaceous plant species present were recorded. Woody plant 

species growing in a larger, 5m x 5m area were also recorded. In FQA each species of plant has an 

associated coefficient of conservatism (C), which is determined by WDNR and botanical experts [9]. This 

C is a measure of the degree (0-10) to which a particular species is constrained to a particular niche 

environment, such as a calcareous fen. Species with C=10 include rare fen specialists, such as Eleocharis 

rostellata (Beak-spike rush) and Cypripedium candidum (White Lady's slipper orchid). Invasive species 

are assigned C=0. Vegetation at fens typically have a relatively high abundance weighted C, which is 

known as the Weighted Coefficient of Conservatism (wC). Multiplying the wC by the square root of the 

number of herbaceous species present (n) in the 1m x 1m plot, and woody species present in the 5m x 5m 

plot provides the Weighted Floristic Quality Index (WFQI): 

 𝑊𝐹𝑄𝐼 = √𝑛 ∗ 𝑤𝐶 = √𝑛 ∗ ∑𝑝𝑖 ∗ 𝐶𝑖 
which is the first of our three floristic quality metrics (fq_WFQI). The number of fen-specialist species 

observed at the test plot (fq_specialists) during this identification process, is our second metric. Finally, in 

September 2018, at the time of airborne imagery collection, which coincided with collection of our 

 
Figure 2: Data collection diagram showing locations of fen sites (see Appendix 

B for site names), example site and plot, and collected data. 
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vegetation clip samples and soil samples, we determined the dominant species present within the 1m x 1m 

test plot and the percent covers, which allowed us to calculate a wC (fq_wC) using the WDNR Floristic 

Quality Calculator [10]. Minor species present have little effect on wC and thus it represents a snapshot of 

floristic quality at the time of site data collection, which should be readily associated with proportional 

clip sampling of vegetation and collection of airborne imaging spectroscopy of the test plot.  

  

Laboratory Analysis / Spectroscopy 

Laboratory analysis involved spectroscopy of the dried and ground clip samples, chemical analysis of 

those same clip samples, and chemical analysis of the soils at each plot. For each clip sample (n=144) we 

prepared three subsamples and ran two replicates of spectroscopy on each of those subsamples. We used 

an ASD Fieldspec III laboratory spectrometer and generated spectra for each sample using reflectance 

values at 2151 wavelengths from the visible through short wave-infrared regions of the spectrum (350nm 

- 2500nm). A Spectralon white reference was used between samples for normalization of raw radiance 

values to determine reflectance. After inspecting each spectrum for integrity/correctness we averaged the 

six spectra to obtain one spectrum for each sample, representing the average reflectance at each 

wavelength of the six replicates. We vector-normalized each of these spectra by dividing by the total sum 

of all reflectances to minimize effects due to variation in overall brightness [11]. We calculated 1st 

derivative / 1st difference reflectance at each wavelength with respect to wavelength. We then 

standardized these reflectances and derivative reflectances by subtracting the mean and dividing by the 

standard deviation (of all samples) for each wavelength. The UW Soil and Forage Lab then analyzed 

these same leaf clip samples for total nitrogen (f_TN), phosphorus (f_P), potassium (f_K), calcium 

(f_Ca), magnesium (f_Mg), sulfur (f_S), zinc (f_Zn), manganese (f_Mn), boron (f_B), iron (f_Fe), and 

copper (f_Cu). The same laboratory analyzed soils for pH (s_pH), potassium (s_K), percent organic 

matter (s_OM), calcium (s_Ca), and magnesium (s_Mg). Soil nitrogen and phosphorus were analyzed in 

the 2016 project at the same laboratory using the Olsen method for phosphorus (sn_P), 2M KCl for nitrate 

(sn_NO3), and 2M KCl for ammonium (sn_NH4). 

 

Airborne Remote Sensing Imaging Spectroscopy 

We obtained hyperspectral imagery using the HySpex (Norsk Elektro Optikk, Norway) full-range (400-

2500 nm) imaging system in operation at UW-Madison. Imagery was calibrated, orthorectified, 

atmospherically corrected following the established workflow described in Appendix C. We staked 

approximately 10 white plastic 5-gallon buckets at each fen to use as ground control points, and obtained 

their locations using a RTK GPS accurate to within two cm. We used these control points to further 

georectify the imagery, so that we could precisely locate the fen test plots on the imagery. At each test 

plot, we extracted the nine pixels of 0.5 m x 0.5m in and immediately adjacent to the 1m x 1m test plot, 

and then processed them similarly to the methodology described above for lab-based spectroscopy (vector 

normalization, derivatives, then standardization). 

 

Correlative Investigations 

We determined Pearson r correlations between all site variables and floristic quality. For variables with 

more than one sample, we used the median and standard deviation of all values (e.g. water table elevation 

= WTmed and WTstd). Prior to this analysis, we employed data quality control methods and removed 

outliers and data from malfunctioning equipment. We also correlated reflectance differences across the 

spectrum with floristic quality and site traits (Appendix D). This enabled us to identify important regions 

of the spectrum for predicting site variables from spectra and partially explained linkages in variables 

such as floristic quality and foliar nutrients / hydrology.  
 

Partial Least Squares Regression (PLSR) Model Building 

We utilized PLSR [12, 13] as our primary regressive model building tool for establishing relations 

between floristic quality and both site variable data (e.g., h_WTmed, f_P, sn_NO3) and spectrometry data 

(reflectance and derivatives at each of the 2100 different wavelengths). PLSR is especially appropriate as 
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a regressive technique when predictor variable data is high in dimensionality and correlated.  In order to 

avoid overfitting our models [14], we further reduced the predictor variable block by identifying 

important variables and regions of the spectrum using the correlative methods described above. We also 

limited our total number of PLSR components, selecting the optimal number less than or equal to 3. For 

the site variable and lab-based spectroscopy models, we removed 4 plots per site from the model 

development process and reserved them for external validation. PLSR models were then developed by 

successively leaving one fen out and using the remaining five fens to predict results for the external 

validation plots from the fen left out; this technique has been shown to increase model robustness [15]. 

For the airborne spectroscopy models, we used a leave-one-plot-out cross-validation technique. 

 

We further reduced the dimensionality of our predictor variable data sets by eliminating unstable 

predictors. Beta values are the PLSR regression coefficients used to convert predictor variable values (site 

variable and spectrometry data) to response variable values (modelled floristic quality). Since we 

standardized all predictor and response variables, these beta values indicate the direction and magnitude 

of predicting behavior for the PLSR site variable of interest. Since it is possible for a variable, such as 

reflectance at a particular wavelength, to be a strong predictor but not a stable one, we calculated the p-

value associated with the null hypothesis that there is a difference in means of beta values obtained from 

PLSR when each of the six fens (16 plots) are successively removed from the PLSR model generation 

[15]. High variations in beta values when moving between fens or plots would result in a high p-value, 

indicating that the variable is not a stable predictor in the model. To remove unstable predictor variables 

we ran PLSR leaving one fen out at a time (six trials). We then computed p values for all predictor 

variables based on how the beta values changed and eliminated the predictor variable that had the highest 

p-value. We continued this process until only one variable remained, and then selected as the final model 

the set of variables that had the best predictive performance. 
 

In addition, we explored the utility of several different pruning methods to reduce the dimensionality of 

the predictor variable block and examined the effectiveness of various combinations of variables at 

modelling floristic quality (Table 1). For example, we used an automated process that began with all 28 of 

our site variables (Full Selection), selecting and eliminating the least stable and least important variables, 

one at a time until the best model performance was obtained. We also used an alternative initial selection 

of variables (Informed Selection) based on expert understanding of which variables are important to fens 

(f_P, f_Ca, h_WTmed, h_ECmed, sn_NO3, and s_pH). For the site variable models, we used site 

variables that could be readily obtained from the field with, for example, using only a handheld soil probe 

and soil test strips (Easy Collection Selection). Finally, for the spectrometry models, Full Selection 

involved selecting all wavelengths correlated with the variable of interest (Appendix D). 
 

Mapping 

We utilized the airborne imagery collected at each fen to generate maps of floristic quality. First, we 

obtained the spectra at each of the test plots as described above and used these spectra and known floristic 

quality metrics to develop new PLSR models in a manner similar to the procedure involving the 

laboratory spectrometry. We trained the model using data from a single fen instead of using data from all 

six fens. Consequently, we left one plot out at a time instead of leaving one fen out at a time, when 

determining the stability of beta regression coefficients. After obtaining suitable beta coefficients, we 

vector normalized and standardized the reflectances at each pixel of the imagery, and then multiplied the 

appropriate reflectances by our beta coefficients. This provided an estimate of floristic quality for each 

pixel of the imagery. 

 

RESULTS AND DISCUSSION 

 

The results presented here are organized as follows: Firstly, we present the relationships between site 

characteristics and floristic quality as correlations and as a predictive model. Secondly, we present the 
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results of using lab-based spectrometry of the dried / ground tissue samples to predict floristic quality and 

other site characteristics. Finally, we present the results of using the airborne HYSPEX imaging 

spectrometry to predict floristic quality within a fen. These results are presented as a map of floristic 

quality and plots of PLSR model performance. 

 

Pearson correlation coefficients between three floristic quality variables [Weighted Floristic Quality Index 

(fq_WFQI), Weighted Coefficient of Conservatism (fq_wC), and Number of Rare and Specialist Species 

Present (fq_Specialists)] and the other site variable data collected are shown in the first three columns of 

Panel A of Fig. 3, respectively. These are the correlative relationships for all 120 fen plots of the six sites 

studied. Generally, floristic quality is strongly negatively correlated with foliar nutrients and strongly 

positively correlated with soil moisture and water table elevation. As previous research suggests low plant 

 

Figure 3: Top panel 

indicates in first three 

columns correlations 

between floristic quality 

metrics (WFQI, wC, 

Specialists) and site 

variable data collected. 

PLSR regression 

coefficients (betas) are 

shown in the bottom panel, 

when site variable data is 

used to predict floristic 

quality. Stability of those 

betas is reflected in the 

negative log of p-values of 

the mean.  Site variables 

with a high magnitude beta 

and a high -log10 p-value 

should be the most 

important and stable 

predictors of floristic 

quality at the six fens 

studied. 
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available nutrients in soils are 

expressed as lowered nutrient 

levels in leaves [7, 16]. 

Calcareous fens generally have 

low plant available nutrients 

[17] and plants adapted to 

survive under low nutrient 

conditions typically have high 

floristic quality [18]. Our 

results support these previous 

findings. Similarly, oxygen 

stress associated with a 

consistently high water table 

results in the presence of niche 

species adapted to survive 

under these conditions, 

resulting in higher FQA 

metrics. 
 

In the bottom panel of Fig. 3, 

the negative log of these p-

values is shown on the second 

axis for each of our floristic 

quality variables. A p-value 

below 0.01 (-log10 > 2) is 

indicative of a stable predictor, 

but these p-values should not 

be associated with formal 

confidence intervals as 

systematic error is likely 

present. We find that foliar 

nutrients are strong and stable 

predictors of floristic quality as 

are water table and soil 

moisture. These results are 

consistent with the definition of 

a calcareous fen, in that 

vegetation, hydrology, and soils 

are all important components 

of a fen ecosystem [7] and 

support our hypothesis that 

foliar nutrients and hydrology 

are robust predictors of floristic 

quality. 

 

Figure 4: Floristic quality model results using site variable data as 

predictors (top subplots) and floristic quality model results using lab-based 

spectrometry as predictors (bottom subplots). Results are color-coded by 

fen site. PLSR models were developed by successively leaving one fen out 

at a time using the remaining five fens to predict results for the one left out.  

The percent of variation of the floristic quality metric explained by each 

model is shown (Q^2) along with the number of components used (comps). 
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We used lab-based spectrometry of the dried / ground plant tissue samples at each plot to predict floristic 

quality through a PLSR analysis similar to the method that was used for site variable data (described 

above). The predictive abilities of site variable data for floristic quality were slightly better than - but 

comparable with - the predictive abilities of lab spectrometry data for floristic quality (Fig. 4).  Since the 

lab-based spectrometry data came from clip samples of the vegetation growing at each test plot, these 

results indicate that the reflectance properties of fen vegetation can be effective predictors of fen floristic 

quality. This strong predictive ability likely reflects a mechanistic connection between biophysical / 

chemical components in the leaves - which we previously determined to be highly correlated with floristic 

quality (Fig. 3) - and the 

spectral properties of the 

leaves. This finding is 

consistent with previous 

research showing that foliar 

nutrients such as nitrogen and 

phosphorus are readily 

detectable through 

spectroscopic analysis [19-22] 

and provides additional 

confidence in a mechanistic 

relationship between spectral 

properties and groundwater-

dependent floristic quality. 
 

We also used the airborne HySpex imagery to generate predictive models of floristic quality using 

identical PLSR methods as with lab-based spectroscopy. We present the predictive results for one of the 

six fens (Bluff Creek Fen, "BCB"). The predictive abilities of HySpex imagery data for floristic quality 

compare favorably to that of the lab-based spectrometry data for fq_wc and fq_rarespecialists but less 

favorably for fq_WFQI (Fig. 5). This model was trained on floristic quality data from only one fen, 

whereas the results from the models for field and lab spectroscopy data were trained on all six fens, the 

results should not be used to determine relative model efficacy. Because the training and validation plots 

in the present case came from a single fen a less robust model is expected, especially since there is a 

limited range of floristic qualities at that one fen. 

 

 
Figure 5: Regression model predictions of floristic quality metrics shown 

using airborne hyperspectral imagery. Results are determined using leave-

one-sample-out validation, as opposed to the leave-one-fen-out validation 

used for the previously described models. 
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When this regression model is applied to the airborne imagery obtained at Bluff Creek Fen on a pixel by 

pixel basis, a map of floristic quality can be generated (Fig. 6). Bluff Creek fen includes a core fen dome 

of very high floristic quality, which we know to be composed mostly of Carex sterilis, Eleocharis 

rostellata, and other fen specialists. In the map, this area appears as a circular region of high floristic 

quality (blue) surrounded by an area of lower floristic quality (red). To the north of the core area, invasive 

buckthorn and dogwood separate the pristine fen core from a drainage ditch that was cut into the fen in 

the 1960s. The modelled floristic quality shows many other “hotspots” at the site where it may be 

expected that fen conditions exist with high floristic quality. Preliminary investigation of the site 

following mapping indicates high floristic quality fen vegetation at locations expected from the map. 

 

Summary of Results 

Summarized in Table 1 are the results for the PLSR FQA models that we created, of which there are three 

general types. First, we predicted floristic quality from site variables (Site Variable Models); second, we 

predicted floristic quality from lab-based spectrometry of dried ground foliage samples (Lab 

Spectrometry Models); and third, we predicted floristic quality from airborne HySpex imagery (Airborne 

Spectrometry Model). For each of these general model types, we used different sets of initial variables 

(e.g. Full dataset, Informed selection), and then used a pruning method which utilized stability of 

regression coefficients to select the most stable and important model variables. We call these the 

"Optimized Model Variables". The exception here is that for the lab-based spectrometry models, we only 

show the three most important and stable variables out of the many (up to twenty) variables that were part 

of the optimized set of variables.  

PLSR FQA Model 
   (Initial Variables) 

%  
WFQI 

% 
wC 

% 
Special. 

Optimized Model Variables *FQ 
Variable 

Site Variable 
Complete Selection 
   (Full Dataset) 

85 82 64 *f_Mg , f_P, f_Ca, f_Fe, f_rNP, h_WTmed 
**f_TN, f_P, f_Ca, h_WTmed 
***f_Mg, f_P, f_Ca, f_Fe, f_rNP, h_WTstd, 

h_ECmed, sn_NO3, s_Mg, s_K 

*WFQI 
**wC 
***Spec. 

Site Variable 

Informed Selection 
   (2Veg = f_P, f_Ca) 

79 84 70 *f_P, f_Ca, h_WTmed 
**f_P, f_Ca, h_WTmed 
***f_P, sn_NO3 

*WFQI 
**wC 
***Spec. 

 
 

Figure 6: Weighted 

Coefficient of Conservatism 

of the Bluff Creek Fen 

mapped using PLSR model 

developed from Imaging 

Spectroscopy obtained from 

airborne hyperspectral 

imager. An area of invasive 

buckthorn divides the 

pristine core fen area from 

the drainage ditch that was 

cut into the area in the 

1950s. Open water is 

masked. 
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   (2 Hydro = h_WTmed,       

h_ECmed) 
   (2Soil = sn_NO3, s_pH) 
 

Site Variable 
Easy Collection Selection 
   (h_SM, h_EC, s_pH, sn_NO3) 

58 48 26 *h_WTmed 
**h_WTmed 
***h_WTmed, h_WCmed, sn_NO3 

*WFQI 
**wC 
***Spec. 

Lab Spectrometry 

Complete Selection 
   (Full Initial Spectrum) 
 

80 80 46 *D1_1699nm, D1_2461nm, D1_2465nm 
**D1_2146nm, D1_2360nm, D1,2461nm 
***D1_1947nm, D1_2152nm, D1_2177nm 

*WFQI 
**wC 
***Spec. 

Airborne Spectrometry 
Complete Selection 
   (Full Spectrum) 

37 83 72 *2380nm (Others unstable predictors) 
**412nm, 450nm, 550, nm, 689nm, 980nm, 

1993nm, 2260nm, 2402nm 
***412nm, 977nm, 1322nm, 2375nm 

*WFQI 
**wC 
***Spec. 

Table 1: Percent of variation explained by various models of floristic quality.  
 

We find that floristic quality of fens is strongly linked to nutrient content of fen vegetation and that 

variations in this nutrient content are readily apparent using spectrometry of dried ground samples as well 

as airborne hyperspectral imagery. A strong relationship between modeled floristic quality using site 

variables versus spectrometry also shows that spectrometry is tightly connected to biophysical site 

characteristics (Appendix E). PLSR models of the remote sensing imaging spectroscopy of a calcareous 

fen can be used to map out variations in floristic quality within that fen and potentially track these 

variations over time. We found these spectrometry models to be comparable in effectiveness to models 

built from a sophisticated suite of hydrologic, soil, and foliar observations. When the sophisticated site 

model was pruned to only include easy-to-collect field data, results deteriorated.  
 

We found that selecting predictor variables consistent with previous definitions of calcareous fens [7] 

allowed us to build better predictive models than a fully automated procedure of variable selection. We 

furthermore found that reducing our number of initial predictor variables in this manner (both for site 

variable models and for spectrometry models) allowed us to build more robust models that performed 

better when transferring the application of the model to new fens (leave one fen out cross validation; Fig. 

4). These models should yield similar results when applied to a new fen that was not part of the training 

process, as we used a leave-one-fen-out model development process whereby models were developed 

using five fens and then applied to a sixth fen. Furthermore, the validation plots were completely removed 

from the model development process and only used at the end to estimate predictive statistics. 
 

CONCLUSIONS AND RECOMMENDATIONS 

 

This project developed a novel methodology for identifying and monitoring groundwater-dependent fen 

ecosystems using biophysically-relevant spectral characteristics obtained using airborne imaging 

spectroscopy and demonstrated the feasibility of quantifying and mapping the impacts of reduced 

groundwater inputs on fen ecosystems. We determined that foliar nutrients, hydrology, and soil chemistry 

are well correlated with floristic quality metrics, which is consistent with our mechanistic understanding 

of fens being defined by their vegetation, hydrology, and soil conditions. Incorporation of these floristic, 

hydrologic, and soil factors into models of floristic quality of fens yielded our highest model performance 

when predicting floristic quality of fens. The correlation between foliar nutrients (such as phosphorus) 

and floristic quality is especially revealing because this represents our mechanistic link from 

groundwater-dependent ecosystems to the predictive power of spectral data. We were able to exploit this 

link and develop robust models to predict floristic quality from lab-based spectra. Finally, this cascade of 
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tight relationships (hydrology→floristic quality→foliar nutrients→spectra) allowed us to create predictive 

models from airborne spectroscopic images and map floristic quality across large, spatially continuous 

areas.   

 

These findings have several important implications. First, our research adds to the body of literature 

regarding which vegetative, hydrologic, and soil factors influence fen floristic quality, which we 

demonstrate has important implications regarding monitoring and protecting these rare ecosystems. 

Second, the spectroscopic methods developed here for assessing floristic quality are shown to be a 

relatively efficient alternative to the traditional approaches of assessing floristic quality of fens over 

large areas, such as the time-meander approach with a team of fen expert botanists. With an appropriately 

calibrated model, several large regions can be imaged in a single flight with better than 1-m spatial 

resolution and perhaps hundreds of miles separating potential or known fen sites. Thus, fens can be 

consistently and efficiently monitored. Third, the ability to map fen floristic quality across extensive areas 

provides managers a unique and valuable way to monitor hydrologic change as fens can be viewed as 

sentinel ecosystems that are quick to respond to subtle changes in groundwater. We have shown that a 

high and consistent water table is critical to the floristic quality of fens, and that when groundwater 

conditions of a fen change (as seen in the effect of the drainage ditch in the map of Bluff Creek Fen – Fig. 

6), the floristic quality deteriorates substantially, with invasive species such as buckthorn replacing fen 

specialists. Thus, since we can detect responses in floristic quality readily, we could use this methodology 

to determine where and when environmentally meaningful alterations to the groundwater regime are 

likely to have occurred. 

 

These findings lead us to recommend further exploration of the feasibility of incorporating these fen 

floristic quality mapping techniques into ongoing groundwater and ecosystem monitoring programs. 

Specifically, continued research should include refinement of the methods to incorporate the effects of 

seasonality and the presence of particular species on model performance. Because previous research has 

shown that plant communities of calcareous fens can vary widely [23] and that plant species can in some 

cases be a more important predictor of foliar nutrient levels than the site variables [24], it would be useful 

to investigate how these factors affect model performance across a wider range of fens. Notwithstanding 

needs for methodological refinement, results from this first-of-its-kind project clearly show that airborne-

based imaging spectroscopy is a viable tool for monitoring and mapping subtle changes in groundwater 

and fen ecosystem health. We see these maps being useful in at least two ways: 1) identifying unknown 

locations of fen ecosystems, where such knowledge can play a key role in conservation of these rare 

ecosystems, and 2) continuous (every 1-2 years) monitoring to assess changes in hydrology and the 

associated impacts on fen floristic quality.  
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StoryMap: https://water.wisc.edu/story-map-project/ 

Page on Loheide HydroEcology Lab Website: https://hydroecology.cee.wisc.edu/research/fens/ 

 

 

 

Students 

 

Arthur C. Ryzak, PhD student, University of Wisconsin – Madison, Water Resources Engineering, Thesis 

title: Hyperspectral Characterization of Calcareous Fens in Southern Wisconsin. ryzak@wisc.edu 

 

 

 

Impact 

 

Calcareous fens are ecosystems with high conservation value in the state of Wisconsin. They are also 

highly dependent on consistent groundwater inputs, which both makes their health an excellent indicator 

of groundwater conditions and makes them susceptible to changes in groundwater conditions (e.g., 

decreased groundwater levels from pumping for irrigation or municipal uses). We used cutting-edge 

remote sensing technologies to develop an innovative and efficient method that assesses the health of 

calcareous fens and changes in groundwater conditions. We showed that hyperspectral remote sensing – 

which uses the part of the electromagnetic spectrum beyond what humans can see with their eyes – can 

accurately predict groundwater, vegetation, and soil characteristics. This new method of monitoring and 

assessing these important ecosystems offers an alternative to traditional methods of assessing fen health, 

which require expensive staffing and expertise resources. As ecosystems and the drivers that impact them 

continue to change in the near future, monitoring and assessment methods such as the one we developed 

will become increasingly important for adaptively and sustainably managing ecosystems and water 

resources.  
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Appendix B - Site Variable Descriptive Statistics 

 

 
Appendix B: Site variable descriptive statistics for data collected at the six fen sites examined in this 

study. Site variable data collected are presented below. Fen codes are as follows: BCB = Bluff Creek Fen; 

BL = Bass Lake Fen; CHER = Cherokee Marsh Fen; CM = Chaffee Creek Fen; SR = Syene Road Fen; 

and VM = Vernon Fen.  Descriptions of these fens can be found in Bart et al, 2019 (in press).  
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Appendix C - Hyperspectral Imagery Collection and Processing 

 

Hyperspectral imagery data were collected using the HySpex (Norsk Elektro Optikk, Norway) full-range 

(400-2500 nm) imaging system in operation at UW-Madison by Phil Townsend Lab. The VNIR-1800 

camera has 186 spectral bands between 400 and 1000 nm with a spectral resolution of 3.26 nm. The 

SWIR-384 camera has 288 spectral bands between 953 and 2518 nm with a resolution of 5.45 nm. The 

HySpex was flown on a Department of Natural Resources Cessna-180. 

 

Imagery was calibrated, orthorectified, atmospherically corrected following an established workflow. The 

processing of Hyspex images includes: (1) radiometric calibration which converts DN (Digital Number) 

values to at-sensor radiance (in mW·nm-1·sr-1·cm-2) values; (2) atmospheric correction in ATCOR4 

(Atmospheric and Topographic Correction for Airborne Scanner Data) which reduces atmospheric effects 

and converts at-sensor radiance to surface reflectance (range: 0-100, in %); (3) geometric correction in 

PARGE (Parametric Geocoding & Orthorectification for Airborne Optical Scanner Data) which ortho-

rectifies images using GPS positions, attitude angles and DEM (Digital Elevation Model); (4) spectral 

extraction which retrieves the average spectra of each field plot; and (5) spectral vector normalization 

which reduces the bidirectional reflectance distribution function (BRDF) effects.
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Appendix D - Spectrometry Correlations 

 

 

Appendix D: Spectrometry correlations of reflectance and 1st derivative reflectance differences at 

indicated wavelength combinations with foristic quality metrics wC, WFQI, and Rare/Specialist Species, 

and site variables foliar phosphorus (f_P), and water table elevation (h_WTmed), and soil plant available 

Nitrate (sn_NO3).  Spectrometry collected from dried / ground clip samples at fen test plots of varying 

floristic quality (n=120). Similarities in correlation "hotspots" between floristic quality metrics and site 

variables enable development of a mechanistic spectrometry model, selecting as input into PLSR specific 

wavelengths that are linked to fen variables of known importance, such as foliar nutrients, water table 

elevation, and soil available nutrients.  
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Appendix E - Comparison of Floristic Quality Model Predictions 

 

 
Appendix E: Comparison of modelled Floristic Quality Metric Weighted Coefficient of Conservatism 

(wC) using PLSR model generated from all available site variable data (floristic chemistry, hydrology, 

soil chemistry), vs. model generated from spectrometry of dried ground vegetation samples. The high 

degree of correlation suggests that Spectrometry of dried ground leaf samples is comparable in 

effectiveness with collection of site variable data as a means of predicting floristic quality.  
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