ASSESSING THE ECOLOGICAL STATUS AND VULNERABILITY OF SPRINGS IN WISCONSIN

Susan K. Swanson, Associate Professor, Department of Geology, Beloit College

Kenneth R. Bradbury, Hydrogeologist/Professor, Wisconsin Geological and Natural History Survey, University of Wisconsin-Extension

David J. Hart, Hydrogeologist/Associate Professor, Wisconsin Geological and Natural History Survey, University of Wisconsin-Extension

TABLE OF CONTENTS

Title Page	1
Table of Contents	
List of Figures	3
Project Summary	4
Introduction	6
Purpose and Scope	6
Study Areas	6
Procedures and Methods	7
Historical Surveys	7
Verification of Spring Locations	7
Selection of Representative Springs	7
Comprehensive Surveys	7
Bimonthly Surveys	8
Results and Discussion	8
Distribution of Springs	8
Physical Characteristics	
Ecological Characteristics	12
Conclusions and Recommendations	13
Status of Spring Ecosystems	13
Conceptual Models and Vulnerability of Springs to Withdrawals	13
References	15

Appendix A: Presentations and Awards

Appendix B: Field Survey Form from Springer et al. (in prep.)

Appendix C: Regional Information on the Distribution of Springs in Iowa County

Appendix D: Geochemistry Results and Charts

Appendix E: Vegetation Diversity Charts, Plant Species Lists, and Importance Values

Appendix F: Distribution of Springs and High-Capacity Wells in Iowa and Waukesha Counties

Appendix G: Acknowledgements

LIST OF FIGURES

Figure 1. Location of Iowa and Waukesha Counties.	6
Figure 2. Distribution of a) historical, b) confirmed, and c) surveyed springs in Iowa County and	
d) historical, e) confirmed, and f) surveyed springs in Waukesha County.	9
Figure 3. Distribution of springs within major stratigraphic units, Iowa County.	9
Figure 4. Spring flow (cfs) in Iowa and Waukesha Counties June-August, 2006.	10
Figure 5. Spring flow measurements for two springs in Iowa County.	10
Figure 6. Concentrations of a) Chloride and b) Nitrate as N at springs near Highland, Otter Creek, and	
	11
	11
Figure 8. Distribution of geochemical groups and bedrock geology (after Mudrey et al., 2007).	12
Figure 9. Distribution of Group 3 springs relative to the Kettle Moraine (after Clayton, 2001).	12
Figure 10. Distribution of Vegetative Strata Cover in a) Iowa County and b) Waukesha County.	13

PROJECT SUMMARY

Title: Assessing the Ecological Status and Vulnerability of Springs in Wisconsin

Project I.D.: WR05R004

Investigator(s): Susan K. Swanson, Associate Professor, Department of Geology, Beloit College

Kenneth R. Bradbury, Hydrogeologist/Professor, Wisconsin Geological and Natural

History Survey, University of Wisconsin-Extension

David J. Hart, Hydrogeologist/Associate Professor, Wisconsin Geological and

Natural History Survey, University of Wisconsin-Extension

Period of Contract:

07/01/05 - 06/30/07

Background/ Need: The need for a clear understanding of the range of physical and ecological characteristics of springs in Wisconsin provides the overall motivation for this project. The topic is relevant in Wisconsin because the Wisconsin Department of Natural Resources must evaluate whether groundwater pumping by new high-capacity wells will result in significant environmental impacts to springs that result "in a current of flowing water with flows of a minimum of one cubic foot per second at least 80% of the time (2003 WI Act 310, p.2)". However, Wisconsin's springs, irrespective of the flow criterion, are poorly studied, resulting in a lack of information for use in determining significance of impacts.

Objectives:

Our primary goal is to collect, classify, and evaluate baseline data on physicochemical characteristics and biological communities of Wisconsin's spring resources. Using historical spring surveys and a comprehensive springs classification system developed by Springer et al. (in prep.), the physical, biological, and sociocultural characteristics of typical spring systems in two regions of the state were documented. The two regions differ in their topography, geology, land use, and development pressures. The approach allows the assessment of the physical and ecological status of spring systems and the formulation of hydrogeological conceptual models of springs in these settings.

Methods:

The methodology involves mapping springs in Iowa and Waukesha Counties, conducting surveys of representative springs in each county, building a database for the spring-related information, and interpreting these data in association with regional information on geology and topography to assess vulnerability to groundwater withdrawals. The study represents the first assessment of spring resources in these regions in approximately 50 years.

Results and Discussion:

Iowa County is rich in spring resources; any loss of spring resources over the last 50 years is minimal. Field data support conceptual models for springs in Iowa County that are based on a typical contact spring. Springs are associated with every major stratigraphic unit, but are most commonly found in association with the Sinnipee Group, near the upper contact of the St. Peter Fm., or near the upper contact of the Cambrian sandstones. Therefore, heterogeneities like vertical and horizontal fractures, both of which are prevalent in the Sinnipee Group rocks, or partings along major stratigraphic contacts may be particularly important in promoting discrete flow in the region. Spring waters discharging from different geologic units can be

distinguished on the basis of major ion geochemistry, and springs discharging from stratigraphically higher units have more variable flow.

In Waukesha County, much of the land that historically contained springs has been developed for residential or commercial purposes. The spatial distribution of springs was historically influenced by the glacial topography and the position of the Maguoketa shale subcrop. Geochemical groups of spring waters suggest that although flow paths originate in the unlithified aquifer, groundwater may flow through shallow bedrock before discharging as depression springs in low-lying wetlands or near streams.

Agricultural and historical uses of spring water have impacted the ecological status of springs in both regions. Plant diversity is somewhat higher at the Waukesha County springs, but the percent cover of native plants is lower and the percent cover of invasive plants is higher. Benthic fauna communities are dominated by noninsect taxa (Amphipoda, Isopoda, Gastropoda), although low numbers of aquatic insects (Tricoptera and Diptera) were found in most springs.

Conclusions/ Implications/

Overall confidence in historical spring locations is high, which allows their use in association with patterns of regional geology and topography. This regional **Recommendations:** information is complemented by the depth of the site-specific information collected using the Springer et al. (in prep.) system. At least 20 springs were surveyed in each county. This number of springs provided sufficient data to develop conceptual models and preliminarily assess vulnerability to pumping, which suggests the overall approach may also be successful elsewhere in Wisconsin.

> Springs discharging from stratigraphically higher units in Iowa County are likely to be vulnerable to pumping from wells along ridge tops that are installed in these aquifers or that span multiple aquifers. Because recharge areas for these springs are probably small and shallow, pumping could result in substantially reduced spring flow or complete loss of flow to small springs. Springs discharging from stratigraphically lower units are probably less vulnerable, due in part to broader contributing areas, but also because most high-capacity wells that pump water from the Cambrian sandstones are located in the floodplain of the Wisconsin River, where few springs exist. Because regional pumping in southeastern Wisconsin affects shallow flow patterns and downward flow from the shallow to the deep parts of the system occurs, springs in Waukesha County are vulnerable to additional groundwater withdrawals from both the shallow and deep parts of the system.

Related **Publications:**

Bartkowiak, B.M. and Swanson, S.K., March 2007. Geochemical and flow characteristics of two contact springs in Iowa County, Wisconsin, American Water Resources Association - WI Section Annual Meeting, Wisconsin Dells, Wisconsin.

Swanson, S.K., March 2007. Assessing the ecological significance and vulnerability of springs in southern Wisconsin, American Water Resources Association - WI Section Annual Meeting, Wisconsin Dells, Wisconsin.

Key Words:

Springs, Iowa County, Waukesha County

Funding:

University of Wisconsin System; Wisconsin Department of Natural Resources; U.S. Geological Survey

INTRODUCTION

Purpose and Scope

The need for a clear understanding of the range of physical and ecological characteristics of springs in Wisconsin provides the overall motivation for this project. The topic is relevant in Wisconsin because the Wisconsin Department of Natural Resources (WDNR) must evaluate whether groundwater pumping by new high-capacity wells (≥ 100,000 gpd) will result in significant environmental impacts to springs that result "in a current of flowing water with flows of a minimum of one cubic foot per second at least 80% of the time (2003 WI Act 310, p.2)". However, Wisconsin's springs, irrespective of the flow criterion, are poorly studied, resulting in a lack of information for use in determining significance of impacts.

The primary goal of this investigation is to collect, classify, and evaluate baseline data on physicochemical characteristics and biological communities of Wisconsin's spring resources. Using historical spring surveys and a comprehensive springs classification system developed by Springer et al. (in prep.), the physical, biological, and sociocultural characteristics of typical spring systems in two regions of the state were documented. The two regions differ in their topography, geology, land use, and development pressures. The approach allows the assessment of the physical and ecological status of typical spring systems and the formulation of hydrogeological conceptual models of springs in these settings, both of which are critical steps in assessing vulnerability to pumping. The methodology involves mapping springs in Iowa and Waukesha Counties, conducting surveys of representative springs in each county, building a database for the spring-related information, and interpreting these data in association with regional information on geology and topography to assess vulnerability to groundwater withdrawals. The study represents the first assessment of spring resources in these regions in approximately 50 years.

Study Areas

Iowa County is located in southwestern Wisconsin in the Driftless Area (Fig. 1). Land surface elevations range from 630 to 1720 feet above mean sea level (amsl), and the region is characterized by nearly horizontal, Cambrian and Ordovician sandstone and carbonate rocks that are exposed in steep and narrow valleys. Pleistocene deposits are absent except for thin layers of loess and/or hillslope sediments on valleys sides and stream sediment in valley bottoms (Clayton and Attig, 1998). The primary land uses in the county are agricultural (68%), followed by forested lands (20%), federal, state, and county lands (6%), and wetlands (5%). Urban land uses (residential, commercial, and manufacturing) account for less than 3% of the total land use. The population of Iowa County grew by 13% from 1993 to 2003, but as of 2000 the population was less that 23,000 (SWWRPC, 2005).

Figure 1. Location of Iowa and Waukesha Counties.

Land surface elevations in Waukesha County (Fig. 1) range from 700 to 1230 feet amsl, and the bedrock is composed of Cambrian, Ordovician, and Silurian sedimentary strata. Units older and deeper than the Ordovician Maquoketa Formation are often lumped together and referred to as the *deep sandstone aquifer* for purposes of describing and modeling regional groundwater flow (Feinstein et al., 2005). The bedrock is overlain by thick (up to 140m) Pleistocene deposits throughout much of the county. One of the most prominent glacial features in the county is the Kettle Moraine, which is an irregular ridge extending from the southwest corner to the northcentral edge of the county (Clayton, 2001). Waukesha County, along with much of southeastern Wisconsin, is one of the most rapidly developing regions of the state. The rate of land conversion from rural to urban uses during the 1990s was approximately 4.7 square miles per year, and the current population of Waukesha County is over 377,000. In 2000, agricultural (30%) and natural areas (27%) remained the largest land uses; however, urban land uses rose from 29% to 37% in the preceding ten years. Much of the increase in urban land uses is attributed to the area of land used for residential purposes (Waukesha County Department of Parks and Land Use, 2006).

PROCEDURES AND METHODS

Historical Surveys

Surveys that document spring locations in Wisconsin were conducted in the early 1800's (1834 to 1836) by the U.S. government and in 1937 by the U.S. Geological Survey (USGS), i.e., the Bordner Survey. These spring surveys were updated for fish management purposes by the Wisconsin Conservation Department (WCD) from 1956 to 1968 for about 60% of the counties in the state. The WCD gathered data on location, flow rate, land use, and a variety of other spring characteristics relating to the potential to support fisheries. These surveys serve as the basis for the historical information on spring locations in Iowa and Waukesha Counties and were supplemented by springs documented in the USGS Geographic Names Information System, WDNR Surface Water Resources reports, WGNHS publications for southwest Wisconsin (DeGeoffroy, 1969), and publications by local experts (Schoenknecht, 2003).

All historical data were converted to an electronic format by scanning, georeferencing, digitizing, and then saving spring positions as ArcGIS shapefiles. All of the spring attribute data in the WCD surveys were also transposed to a Microsoft Access database. Six-digit unique identifiers were assigned to each spring using the county code and by then numbering the springs in the order they appeared in the WCD surveys. ArcGIS shapefiles and the Access database are available at the UW-Water Resources Library.

Verification of Spring Locations

Spring locations were verified by identifying the current owners of properties that, according to historical data, contain springs. Property ownership was determined using land atlas plat books and geodatabases of tax parcels and ownership data supplied by local land information offices. Phone numbers for owners were determined using phone books and on-line resources. WDNR Land Managers were also identified for state lands. Contact information was found for approximately 68% of the relevant property owners in each county. Owners were contacted, asked whether a spring exists on the land today. If so, the owner was asked to describe the emergent setting, the volume of spring flow, and the persistence of spring flow.

Selection of Representative Springs

In Iowa County, the geographic positions of historical springs were used in association with property owners' descriptions and physical characteristics of the region to select a set of 24 representative springs to survey. The physical characteristics include elevation, slope, and aspect, as determined from a 10-meter digital elevation model, and stratigraphic position and position with respect to stratigraphic contacts, based on the state-wide geologic map of Wisconsin (Mudrey et al., 2007). Elevation and aspect can affect the development of microclimates, and slope and aspect can be valuable in predicting the distribution of biota due to variations in solar energy (Wadsworth and Treweek, 1999). Stratigraphic position may indicate the nature of aquifer heterogeneities that are responsible for springs. Historical spring locations were overlaid onto the regional datasets to determine if spatial relationships between spring position and the physical property exist. Where relationships are thought to exist, springs were selected so as to closely reproduce the distributions observed in the historical data. In Waukesha County, very few historical springs could be verified (see Results and Discussion). Therefore, 20 springs were selected primarily on the basis of property owners' descriptions, access to public or private property, and, to some degree, the geologic setting and geographic distribution of springs within the county.

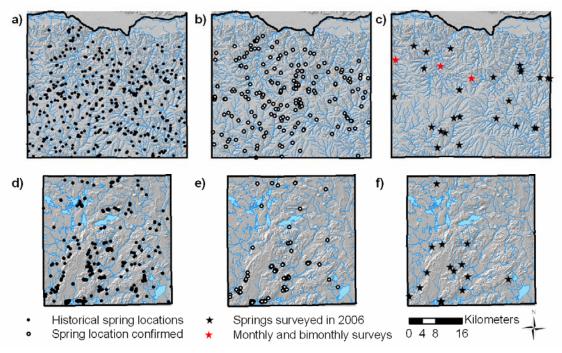
Comprehensive Surveys

Springer et al. (in prep.) identify the need for an integrated springs classification system to further recognition, management, and conservation of springs ecosystems. They have developed a system that builds on the historical Meinzer (1927) spring discharge classification scheme by incorporating a comprehensive set of spring characteristics including information on spring location, weather conditions, site environmental conditions and land use, habitat, vegetation, wildlife, aquatic and terrestrial invertebrates, geomorphic conditions, geologic conditions, flow characteristics, and water quality. Surveys based on this classification system were conducted at the 24 representative springs in Iowa

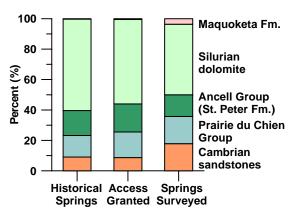
County during June and July 2006 and the 20 representative springs in Waukesha County during July and August 2006. Teams of three or four spent two to four hours characterizing each spring. The classification system was modified slightly to reflect the expertise of the sampling team. For example, terrestrial invertebrates were not sampled. A copy of the field survey form is provided in Appendix B. All spring data are stored in the Access database.

Standard methods were applied for all field measurements and the collection of all field samples. Aquatic macroinvertebrates were collected prior to disturbance by site description and physicochemical sampling. The samples were collected using a 12-inch Surber net, a 6-inch Surber net, a D-net, or by hand-picking, where appropriate. Samples were transferred to plastic bags, kept cool, and preserved within 12 hours with 70% Ethyl Alcohol/H₂O solution prior to separation from substrate materials. Specimens were separated from substrate materials by hand-picking and suspension in freshwater, then returned to sealed glass vials for later identification. The number of samples collected at each spring location reflects the size and structural heterogeneity of the spring site. At a minimum, benthic fauna was sampled at the orifice of each spring; all but the smallest springs were also sampled at downstream locations, along springbrooks and, in some cases, at the spring channel/receiving waterbody confluence. Although detailed sampling was conducted, only qualitative analysis of these data was completed.

Water quality samples were collected at the orifice of each spring and analyzed for concentrations of major ions (calcium, magnesium, sodium, potassium, bicarbonate, sulfate, nitrate, and chloride), iron, phosphorous, total dissolved solids (TDS), and alkalinity. Samples were field-filtered, preserved with sulfuric (nutrients) or nitric (metals) acid, as appropriate, and processed at the Wisconsin State Laboratory of Hygiene. Dissolved oxygen (DO), pH, conductivity, temperature, and alkalinity were also measured in the field. Geochemical results were used to calculate charge balances to insure that errors were approximately $\pm 5\%$ or less.


Bimonthly Surveys

Three additional springs in Iowa County were monitored bimonthly in 2006 for the full suite of spring characteristics, including sampling for oxygen-18 and deuterium (Fig. 2). Flow was measured on a monthly basis. The three springs occur at different stratigraphic positions, elevations, and aspects. They also vary by level of disturbance. A spring near Highland is thought to discharge from the Prairie du Chien Group and occurs on a steep and wooded, south-facing slope. Another spring, near Otter Creek, is thought to discharge from the Jordan Formation. It is encased in a concrete spring pool, which occurs in an open setting, near a valley bottom. The third spring, in Governor Dodge State Park, discharges into a spring house, which is located near the upper contact of the St. Peter Formation with the Sinnipee Group. It was monitored in association with the WGNHS and UW-Madison (Carter, in prep.).


RESULTS AND DISCUSSION

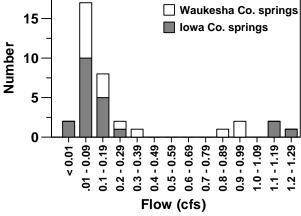
Distribution of Springs

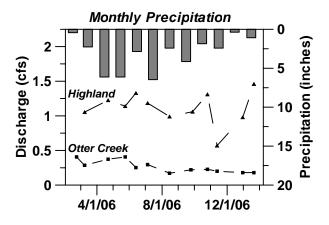
This investigation found approximately 407 and 282 historically documented springs in Iowa and Waukesha Counties, respectively (Fig. 2). Contact information was available for 274 property owners in Iowa County, of whom 190 could be reached. Property owners confirmed the presence of 175 of these springs, and access was granted to nearly all of them. Conversations with property owners and observations in the field suggest that many other springs that were not historically mapped also exist in Iowa County. Contact information was available for 193 property owners in Waukesha County, of whom 138 could be reached. Property owners confirmed the presence of approximately 43 of the historical springs, and access was granted to only 25. Conversations with property owners and observations in the field suggest that much of the land that historically contained springs has been developed for residential or commercial purposes. Ponds have also been created on at least six of the properties that once contained distinct springs. Because access was granted to only 25 springs, there was very little flexibility in the selection of springs for surveys in Waukesha County.

Figure 2. Distribution of a) historical, b) confirmed, and c) surveyed springs in Iowa County and d) historical, e) confirmed, and f) surveyed springs in Waukesha County.

Figure 3. Distribution of springs within major stratigraphic units, Iowa County

Access was granted to nearly 175 springs in Iowa County, so the distribution of springs relative to regional physical conditions could be considered in selecting springs for surveys. On the basis of the historical data, springs are associated with every major stratigraphic unit in Iowa County; however, spatial overlays of the historical springs onto the regional bedrock map show that the springs are not distributed randomly across the landscape. They are most commonly found in association with the Sinnipee Group rocks, near the upper contact of the St. Peter Formation with the Sinnipee Group rocks, or near the upper contact of the Cambrian sandstones with the Prairie du Chien Group (Appendix C). The 24 springs selected for surveying closely resemble these relationships (Fig. 3). Springs


exist throughout the ranges of elevation, slope, and aspect in Iowa County. However, the distributions of springs relative to these properties do not differ significantly from the countywide distributions ($\alpha = 0.05$), so no distinct relationships between spring position and these three properties are thought to exist. However, in selecting representative springs, an effort was made to choose springs from a variety of elevations, slopes, and aspects, thus helping to insure that the springs surveyed are representative of the diversity of physical and ecological conditions in the county (Appendix C).

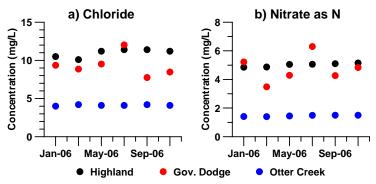

Physical Characteristics

Flow was measurable at 36 of the 47 springs that were surveyed. The mean discharge for all surveyed springs is 0.24 cfs, but the median is 0.08 cfs (Fig. 4). Among the springs that were monitored, there is no clear relationship between the magnitude of flow and the major stratigraphic unit from which the spring discharges. Three springs discharged at rates of 1 cfs or more at the time of monitoring; however,

one of these springs has been ponded, so the measurement probably includes a significant component of diffuse groundwater discharge. All three of these springs are located in Iowa County.

Fig. 5 shows spring flow hydrographs for two of the springs that were monitored on a monthly basis in Iowa County. The flow record for the third spring in Governor Dodge State Park is less complete and less reliable. Flow measurements are difficult at this site because the water depth is too low for a current meter and the bedrock channel hinders the use of a cutthroat flume. The records show that while the Otter Creek spring responds to seasonal patterns in precipitation, the response is damped, i.e., the total variation in flow throughout the period is relatively low. Discharge at the spring near Highland is more variable and may be more sensitive to storm events.

Figure 4. Spring flow (cfs) in Iowa and Waukesha Counties June-August, 2006.


Figure 5. Spring flow measurements for two springs in Iowa County.

Piper diagrams, plots of ion concentrations, and plots of field parameters (Appendix D) show the overall similarity in geochemistry among spring waters in Iowa and Waukesha Counties. For example, water discharging from springs in both counties are a Calcium-magnesium Bicarbonate type. To differentiate possible groundwater flow paths to springs, concentrations of analytes were plotted according to the major stratigraphic unit from which the spring is thought to discharge. This approach assumes that the hydrogeologic properties of the units differ enough to treat each unit as a separate hydrostratigraphic unit. In Iowa County, mean TDS, pH, and nitrate concentrations in spring waters differ significantly ($\alpha = 0.05$) among major stratigraphic units. TDS concentrations in groundwater often increase along a flow path (Freeze and Cherry, 1979). Groundwater flowing along a simplified flow path in Iowa County might originate in a recharge area on a ridge and pass through the Sinnipee Group, the St. Peter Formation, the Prairie du Chien Group, and finally, the Cambrian sandstones. However, not all ridges are composed limestone and dolomite belonging to the Sinnipee Group, and groundwater is probably recharged along some slopes as well as ridge tops. In addition, flow through fractures may dominate in some units, whereas porous media flow dominates in others, resulting in a variety of possible flow paths and residence times. TDS is high in water discharging from the Sinnipee Group rocks and low in water discharging from the Cambrian sandstones. Therefore, TDS concentrations may be more representative of equilibrium conditions within particular units rather than the position along a simplified flow path.

Values of pH that are associated with the stratigraphic units in Iowa County are more indicative of a typical chemical evolution path for water dissolving calcite (Freeze and Cherry, 1979). The values increase from a mean pH of 6.9 for water discharging from the Sinnipee Group to a mean of 7.4 for water discharging from the Cambrian sandstones. Calcite saturation indexes (SI_{cal}) suggest the same chemical evolution path. They generally increase (become more saturated) along the simplified flow path; however, differences in the mean SI_{cal} among stratigraphic units are not significant.

Nitrate concentrations are highest and most variable in springs discharging from the Sinnipee Group. Concentrations are progressively lower and less variable in water discharging from the St. Peter Fm., the Prairie du Chien Group, and the Cambrian sandstones. These relationships are not surprising because many areas that are used for row crops coincide with the areas mapped as the Sinnipee Group.

Bi-monthly sampling results for the springs near Highland, Otter Creek, and Governor Dodge State Park show very little temporal variation in ion concentrations or in environmental isotopes (Appendix D). Even nitrate and chloride concentrations, which could vary in response to seasonal inputs of fertilizers or road salts, are relatively constant (Fig. 6). Concentrations of both ions do vary at the Governor Dodge spring. However, samples collected from this spring are

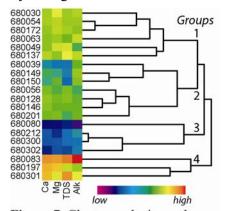


Figure 6. Concentrations of a) Chloride and b) Nitrate as N at springs near Highland, Otter Creek, and Gov. Dodge State Park.

the only ones that were not analyzed at the WI State Laboratory of Hygiene and which have charge balance errors that are consistently greater that 5% (Carter, in prep.). Therefore, it is unclear if the variation in concentration is real or a result of inaccuracies in the analyses. Concentrations of both ions are consistently greater at the stratigraphically higher Highland and Governor Dodge springs.

In Waukesha County, relationships between major ion concentrations and stratigraphic units are less clear. Calcium, magnesium, and TDS concentrations appear to be related to stratigraphic units (Appendix D); however, differences in concentrations among the units are not significant (α =0.05). This is not surprising because water discharging to springs in the region also flows through overlying glacial deposits; some springs may exist where groundwater flows exclusively through unconsolidated materials.

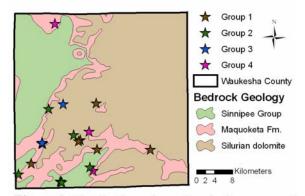

Therefore, hierarchical cluster analysis of ion concentrations, which has been shown to be useful in discerning subtle geochemical differences among spring waters (Swanson et al., 2001), was used. Hierarchical clustering successively joins the most similar observations. Ward's hierarchical clustering method was chosen, and all analytical data were standardized prior to performing the analysis. Standardization is necessary because concentrations vary over a wide range among analytes. Readers are referred to Swanson et al. (2001) for further details of the approach. The analytes chosen for the cluster analysis are calcium, magnesium, TDS, and alkalinity, because these analytes were thought to be good indicators of aquifer materials. Fig. 7 shows that the cluster analysis results in four groups of springs, identified by spring number.

Figure 7. Cluster analysis results, Waukesha County.

Fig. 8 shows the spatial distribution of the four groups of springs overlaid onto a map of the bedrock geology in Waukesha County. Group 1 springs are broadly associated with areas mapped as Silurian dolomite, and Group 2 springs are broadly associated with areas mapped as the Sinnipee Group. Fig. 7 shows the similarity between these two groups of springs, which may help explain the position of one of the Group 2 springs (680056) in an area mapped as Silurian dolomite. Group 4 springs are broadly associated with areas mapped as Maquoketa Formation, but Group 3 springs do not appear to be associated with any of the mapped units. These springs have the lowest relative ion concentrations (Fig. 7), and when overlaid onto a digital elevation model (Fig. 9), it is clear that they align with the

Kettle Moraine, as do many other historical springs (Fig. 2). These observations, albeit preliminary, suggest that the Group 3 springs might be dominated by groundwater that flows primarily through unconsolidated deposits, whereas groundwater discharging to Groups 1, 2, and 4 springs may flow through bedrock somewhere along the flow path.

Group 3

Kettle Moraine

Waukesha County

Elevation (meters)

High: 404

Low: 177

0 2 4 8

Kilometers

Figure 8. Distribution of geochemical groups and bedrock geology (after Mudrey et al., 2007).

Figure 9. Distribution of Group 3 springs relative to the Kettle Moraine (after Clayton, 2001).

Ecological Characteristics

Ecological assessments of the 47 springs focus on qualitative descriptions macroinvertebrate diversity and quantitative measures of the diversity and distribution of vegetation. Invertebrates are widely used as indicators of water quality in streams, but no criteria currently exists for springs. Springer et al. (in prep.) state that a 95% inventory of aquatic macroinvertebrates may require five or more visits over two or more years. Even so, some general observations of macroinvertebrate diversity can be made on the basis of the sampling conducted during this study. Springs appear to support invertebrate communities that are similar to those observed in northwestern Illinois (Webb et al., 1998). Benthic fauna communities are dominated by non-insect taxa (Amphipoda, Isopoda, Gastropoda), although low numbers of aquatic insects (Tricoptera and Diptera) were found in most springs. Of note was the abundance of caddisfly larvae (Tricoptera) at the Highland spring and the prevalence of the terrestrial slug *Arion fasciatus*, which was found in many of the Iowa County springs. As in other studies of cold-water spring fauna in the region (Webb et al., 1998), benthic invertebrate diversity in spring pools appears to be relatively low compared to other cold-water lotic communities, and downstream changes in diversity are expected due to variations in water temperature and chemistry, substrate, and flow regime (McCabe, 1998).

Ecological surveys that use rapid inventory techniques like those used in this study often assume that native invertebrate diversity will be reflected by native plant diversity (Crisp et al., 1998). Thorough baseline inventories of plants also require far fewer site visits than those needed for aquatic invertebrate inventories (Springer et al., in prep.). Although each of the springs in this study was visited only once, detailed descriptions of the type and prominence of plants were made. The types and proportions of geomorphic surfaces (e.g., pool, colluvial slope) were recorded, and the prominence of vegetative strata classes (e.g., tall canopy, herbaceous) were estimated within each surface type. In addition, species lists were generated and the prominence of each plant in each geomorphic surface type was recorded. Using these data, importance values (IV) and importance percentages (IP) for vascular plants by growth habit were calculated. The IV is the sum of the relative frequency of a given species and the relative coverage for that species; the IP is the IV divided by 2 and expressed as a percentage. Species with higher IVs are considered more dominant. Species lists by site and calculations of IV/IPs are provided in Appendix E.

To determine if patterns of plant diversity exist among springs, the percent cover for six vegetative strata cover classes were plotted for springs grouped by major stratigraphic unit (Fig. 10). Note that total cover can exceed 100% because canopy can coincide with other cover classes. In Iowa County, springs discharging from the stratigraphically higher Sinnipee Group are dominated by herbaceous plants. These

springs exist near ridge tops and edges of valleys where tree cover is relatively low. Dominance by trees (tall and mid-canopy) increases along valley slopes, which are often composed of the St. Peter Fm., the Prairie du Chien Group, or the Cambrian sandstones. Herbaceous plants are more dominant near valley bottoms. Herbaceous plants tend to dominate in Waukesha County, regardless of stratigraphic unit.

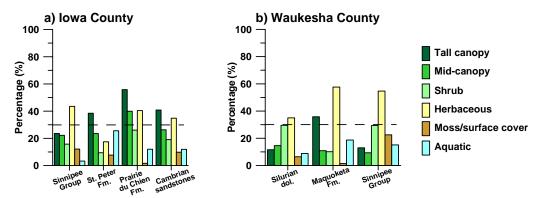


Figure 10. Distribution of Vegetative Strata Cover in a) Iowa County and b) Waukesha County.

For dominant vegetative strata cover classes within each stratigraphic group, i.e., those that exceed 30% cover (Fig. 10), Shannon's index of diversity (H'), the percent cover of native plants, and the percent cover of invasive plants were plotted (Appendix E). Results are similar among stratigraphic groups in Iowa County. Diversity ranges from 0.20 to 0.35 for trees (tall and mid-canopy) and herbaceous plants. The percent cover of native plants ranges from 65 to 100%, and the percent cover of invasive plants ranges from 10 to 38%. Results are also similar among stratigraphic groups of springs in Waukesha County, but diversity is generally higher for herbaceous plants (0.53 – 0.71). The percent cover of native plants ranges from 53 to 77%, and the percent cover of invasive plants is ranges from 21 to 52%.

CONCLUSIONS AND RECOMMENDATIONS

Status of Spring Ecosystems

Iowa County is rich in spring resources, and any loss of spring resources over the last 50 years is minimal. When compared to springs in northwestern Illinois (Webb et al., 1998), the species richness and diversity for plants at the Iowa County springs appears to be a bit lower. However, the percent cover of native species is relatively high and the percent cover of invasives is relatively low. Agricultural and historical uses of spring water clearly impact the ecological status of springs in this region. Cattle currently have or have recently had direct access to nearly 30% of the springs that were surveyed, and three of the springs emerge from spring houses that were originally built as part of a farmstead.

Plant diversity is somewhat higher at the Waukesha County springs, but the percent cover of native plants is lower and the percent cover of invasive plants is higher. The historical use of spring water and associated modifications to springs in the City of Waukesha are very well-documented (Schoenknecht, 2003). None of the springs within the City of Waukesha were surveyed, but results suggest that the ecological status of springs elsewhere in the county has been similarly compromised by historical uses of the water. Approximately 45% of the springs surveyed have been significantly modified in some way. Some springs have pipes that direct flow and others have concrete boxes or spring houses that fully encase the spring and hinder recovery of the natural system.

Conceptual Models and Vulnerability of Springs to Withdrawals

Field data support conceptual models for springs in Iowa County that are based on typical contact springs, where water emerges along slopes and at lithologic contacts with differences in hydraulic conductivity. Springs are associated with every major stratigraphic unit in Iowa County, but are most commonly found in association with the Sinnipee Group, near the upper contact of the St. Peter Fm., or near the upper

contact of the Cambrian sandstones (Fig. 3, Appendix C). This indicates that aquifer heterogeneities like vertical and horizontal fractures, both of which are prevalent throughout the Sinnipee Group rocks, or partings along major stratigraphic contacts may be particularly important in promoting discrete flow in the region. There is some evidence that flow is more variable in springs discharging from stratigraphically higher geologic units, which supports a model that includes the influence of fractures. However, isotope levels and concentrations of most ions at these springs are relatively stable, indicating mixing along flow paths and/or a component of flow through porous media. In regions with high topographic relief, like Iowa County, groundwatersheds are more likely to coincide with surface watersheds (Toth, 1963). Therefore, stratigraphically higher springs may have small recharge areas that could be easily delineated by relying on topography. The wide range of nitrate concentrations in water discharging from these springs further supports the existence of small and shallow watersheds, where local land use influences geochemistry. There is also some evidence that flow is less variable in springs discharging from stratigraphically lower geologic units, which indicates longer or less direct flow paths. There is less variability in nitrate concentrations at these springs, and concentrations are generally lower. This indicates broader or deeper groundwatersheds, with a greater degree of mixing along flow paths.

The vulnerability to pumping of individual springs in Iowa County will require site-specific investigation because perched water tables and local aquitards are common in the Driftless Area (Krohelski et al., 2000). However, some generalizations can be made on the basis of the models presented above and the distribution of high-capacity wells in the county. Springs discharging from stratigraphically higher units are likely to be vulnerable to pumping from wells along ridge tops that are installed in these aquifers or that span multiple aquifers. Because recharge areas for these springs are probably small and shallow, pumping could result in substantially reduced spring flow or complete loss of flow to small springs. Springs discharging from stratigraphically lower units are probably less vulnerable, due in part to broader contributing areas, but also because most high-capacity wells that pump water from the Cambrian sandstones are located in the floodplain of the Wisconsin River, where few springs exist (Appendix F).

The spatial distribution of springs in Waukesha County is influenced by the glacial topography and the position of the Maquoketa shale subcrop. Springs were historically concentrated along the western margin of the Kettle Moraine and within the drumlinized zone the east (Fig. 2). Very few springs were mapped northwest of the Maquoketa shale subcrop, which is recognized as an important recharge area for the deep sandstone aquifer (Feinstein et al., 2005). The four geochemical groups of springs presented above require more thorough testing; however, results suggest that while flow paths originate in the unlithified aquifer, groundwater may flow through shallow bedrock before discharging as depression springs in low-lying wetlands or near streams. Regional flow modeling for southeastern Wisconsin supports this conceptual model, and shows local, topographically-controlled flow systems near the Kettle Moraine and other areas of relief. Particle tracking shows that groundwater intersects shallow bedrock before discharging to surface water bodies or at the water table (Feinstein et al., 2005). Although they are not explicitly modeled, groundwater may flow along similar paths to springs.

Feinstein et al. (2005) conclude that the widespread regional pumping in southeastern Wisconsin (Appendix F) has affected some shallow flow patterns, especially those west of the Maquoketa shale subcrop, and that downward flow from the shallow to the deep parts of the system occurs. Furthermore, their work shows that shallow high-capacity wells derive water primarily from diverted baseflow or induced flow from streams. Therefore, springs in Waukesha County are likely to be vulnerable to additional groundwater withdrawals from both the shallow and deep parts of the system. However, Group 3 springs are probably most vulnerable to withdrawals from the unlithified aquifer, and Group 1, 2, and 4 springs are most vulnerable to withdrawals from the shallow bedrock aquifer.

The approach to developing conceptual models of springs and assessing their vulnerability to pumping relies on gaining confidence in the positional accuracy of historical springs, as well as interpreting the

site-specific geochemical and spring flow data that were collected as part of this study. In Iowa County, 92% of the property owners that were interviewed confirmed the location of one or more springs on their property. Fewer springs remain in Waukesha County, but many owners recall the existence of a spring on their property in the past. Therefore, the overall confidence in historical spring locations is high, which allows their use in association with patterns of regional geology and topography. These regional data are complemented by the depth of the site-specific information collected using the Springer et al. (in prep.) system. At least 20 springs were surveyed in each county. This number of springs provided sufficient data to develop conceptual models and preliminarily assess vulnerability to pumping, suggesting that the overall approach may also be successful elsewhere in the state.

REFERENCES

- Carter, J., in preparation, Investigation of perched and regional flow systems in bedrock aquifers, Iowa County, WI: Madison, WI, University of Wisconsin-Madison, M.S. Thesis.
- Clayton, L., and Attig, J.W., 1997, Pleistocene geology of Dane County, WI: WGNHS Bulletin 95, 64p. Clayton, L., 2001, Pleistocene geology of Waukesha County, WI: WGNHS Bulletin 99, 33p. plus map.
- Craig, H., 1961, Isotopic variations in meteoric waters: Science, v. 133, no. 3465, p. 1702-1703.
- Crisp, P.N., Dickinson, K.J.M., and Gibbs, G.W., 1998, Does native invertebrate diversity reflect native plant diversity?: Biological Conservation, vol. 83, no. 2, p.209-220.
- DeGeoffroy, J., 1969, Geochemical prospecting by spring sampling in the southwest Wisconsin zinc mining area: WGNHS Information Circular 10, 28p.
- Feinstein, D.T., Hart, D.J., Krohelski, J.T., Eaton, T.T., Bradbury, K.R., 2005, Simulation of regional groundwater flow in southeastern Wisconsin, Report 2: Model results and interpretation: U.S.G.S. and WGNHS Final Administrative Report to the Southeast WI Regional Planning Commission, 63p.
- $Freeze,\,R.A.,\,and\,Cherry,\,J.A.,\,1979,\,Groundwater:\,Englewood\,Cliffs,\,NJ,\,Prentice-Hall,\,Inc.,\,604p.$
- Krohelski, J.T., Bradbury, K.R., Hunt, R.J., and Swanson, S.K., 2000, Numerical simulation of groundwater flow in Dane County, Wisconsin: WGNHS Bulletin 98, 31p.
- McCabe, D.J., 1998, Biological communities in springbrooks, *in* Botosaneanu, L., ed., Studies in crenobiology: the biology of springs and springbrooks: Leiden, Backhuys Publishers, p. 221-228.
- Meinzer, O.E., 1927, Large springs in the United States: U.S.G.S. Water-Supply Paper 557, 94p. Mudrey, M.G., Jr., Brown, B.A., and Greenberg, J.K., 2007, Bedrock geologic map of Wisconsin:
- WGNHS State Map 18-DI, version 1.0, 1 CD-ROM.
- Schoenknecht, J.M., 2003, The Great Waukesha Springs Era, 1868-1918: Waukesha, WI, , 322p.
- Springer, A.E., Stevens, L.E., Anderson, D.E., Parnell, R.A., Kreamer, D.K., and Flora, S.P., in prep., A comprehensive springs classification system: integrating geomorphic, hydrogeochemical, and ecological criteria, *in* Stevens, L.E., and Meretsky, V.J., eds., Every last drop: ecology and conservation of springs ecosystems in North America: Tucson, University of Arizona Press.
- Southwest WI Regional Planning Commission (SWWRPC), 2005, Iowa County Comprehensive Plan: SWWRPC Planning Report No. 05/188.
- Swanson, S.K., Bahr, J.M., Schwar, M.T., and Potter, K.W., 2001. Two-way cluster analysis of geochemical data to constrain spring source waters: Chemical Geology vol., 179, no. 1-4, p.73-91.
- Swanson, S.K., Bahr, J.M., and Potter, K.W., 2006. A local meteoric water line for Madison, Wisconsin: WGNHS Open File Report 2006-01, 4 p.
- Toth, J., 1963, A theoretical analysis of groundwater flow in small drainage basins: Journal of Geophysical Research, vol. 68, p.4795-4812.
- Wadsworth, R., and Treweek, J., 1999, Geographical Information Systems for Ecology: Essex, England, Addison Wesley Longman Limited, 184p.
- Waukesha County Department of Parks and Land Use, Land Resources Division, 2006, Waukesha County Land and Water Resource Management Plan 2006 2010: Waukesha, WI, 92p.
- Webb, D.W., Wetzel, M.J., and Phillippe, L.R., 1998, The aquatic biota and groundwater quality of springs in the Lincoln Hills, Wisconsin Driftless, and Northern Till Plains of Illinois: Illinois Natural History Survey, Center for Biodiversity Technical Report 1998 (6), 164p.

APPENDIX A: Presentations and Awards

Swanson, S.K., March 2007. Assessing the ecological significance and vulnerability of springs in southern Wisconsin, American Water Resources Association - Wisconsin Section Annual Meeting, Wisconsin Dells, Wisconsin.

Outstanding Undergraduate Presentation Award:

Bartkowiak, B.M. and Swanson, S.K., March 2007. Geochemical and flow characteristics of two contact springs in Iowa County, Wisconsin, American Water Resources Association - Wisconsin Section Annual Meeting, Wisconsin Dells, Wisconsin.

APPENDIX B: Field Survey Form from Springer et al. (in prep.)

Site Code:	S	Site	Name:					Date:
								INVERTS:
								Ownership: NPS BLM USFS Private
Access Des				quad map.	·			Ownership. 1410 BEAT COLO 111
	•							
	$\frac{1}{1}$ yes \square by Log Sheet Use			nd Model:			Photo	Kind (circle one): film (NCPN) digital(SCPN)
Photo Pt#	Photo Type*	Roll#	Frame#	Time	Hgt (cm)	Photographer	T	Caption
Dhoto Dolora	tion Comments:	<u> </u>						
PNOW Kelocai	ION COMMENTS.				 	1	 	
Photo Relocat	tion Comments:							
			<u> </u>		1			
Photo Relocat	tion Comments:							
Photo Relocat	tion Comments:					т —		
Photo Reloca	tion Comments:							
T Hote Ttal.	011 0011	 						
Photo Relocat	Lion Comments:							
*Note: Photo	Type Choices: Site;	; Landscape,	Feature, Fieldw	vork, Fauna,	Vegetation, Dist	turbance, Other		
IMATE								
	e (enter number)		_					
[0 = calm; 1	= smoke drifts; 2 =	· light breeze;	; 3 = breeze wit	th constant m	notion; 4 = sm r	oranches move, dust re	ises; 5 = sma	nall trees sway; 6 = Ig branches moving, wind whistling]
Rain Code	(enter number):	:	[0 = r	no rain; 1 = m	nist or fog; $2 = 1$	light drizzle; 3 = light r	rain; 4 = heav	vy rain; 5 = snow]
Cloud Cove	er (enter numbe	er):	_ 			Air Temperat	ture:	°c°c
E ENVIRO	NMENTAL DESC	CRIPTION						
Aspect:	de	eg. <u>Slor</u>	<u>e</u> pe:	deg	g. <u>Slope</u>	variability (check	$\overline{\text{one}}$:	high □ medium □ low □ none
Site Area (check one)	< 2 m ² □	2–10 m ²	☐ 10-100	$m^2 \square 100$	$-1,000 \text{ m}^2 \Box \ 0.$.1-1 ha	□ 1-10 ha □ 10-100 ha □ >100 ha
Landscape	context Ar	other enri	ng within 500	0 m· 🖂 ,	ves 🗆 no	Other	riparian v	regetation within 500m: yes no
		tottier sprin	ng within 50	· · · ·	VC5 110	other	•	• • • • • • • • • • • • • • • • • • • •

2005: APR 14 Page - 1

	bedrock CS= colluvi. OTH=other /): □ cave □ or meadow □ riputs:	vial slope; C=c	hyporheic barren rock	□ wet wall □ upland □	madicolous other (describ	□ spray zone	e □ pool [stream
Tu=tunnel; MAD=madicolous flow; Collaborates (check all that apply cienega hillslope Site Environmental Commental	OTH=other /): cave original content	orifice [iparian [hyporheic barren rock	□ wet wall □ upland □	madicolous other (describ	□ spray zone	e □ pool [stream
J=tunnel; MAD=madicolous flow; Cabitats (check all that apply cienega ☐ hillslope ☐ ite Environmental Commental Com	OTH=other /): cave original content	orifice [iparian [hyporheic barren rock	□ wet wall □ upland □	madicolous other (describ	□ spray zone	e □ pool [stream
J=tunnel; MAD=madicolous flow; Cabitats (check all that apply cienega ☐ hillslope ☐ te Environmental Commental Comm	OTH=other /): cave original content	orifice [iparian [hyporheic barren rock	□ wet wall □ upland □	madicolous other (describ	□ spray zone	e □ pool [stream
J=tunnel; MAD=madicolous flow; Cabitats (check all that apply cienega ☐ hillslope ☐ te Environmental Commental Comm	OTH=other /): cave original content	orifice [iparian [hyporheic barren rock	□ wet wall □ upland □	madicolous other (describ	□ spray zone	e □ pool [stream
J=tunnel; MAD=madicolous flow; Cabitats (check all that apply cienega ☐ hillslope ☐ ite Environmental Commental Com	OTH=other /): cave original content	orifice [iparian [hyporheic barren rock	□ wet wall □ upland □	madicolous other (describ	□ spray zone	e □ pool [stream
J=tunnel; MAD=madicolous flow; Cabitats (check all that apply cienega ☐ hillslope ☐ te Environmental Commental Comm	OTH=other /): cave original content	orifice [iparian [hyporheic barren rock	□ wet wall □ upland □	madicolous other (describ	□ spray zone	e □ pool [stream
J=tunnel; MAD=madicolous flow; Cabitats (check all that apply cienega ☐ hillslope ☐ te Environmental Commental Comm	OTH=other /): cave original content	orifice [iparian [hyporheic barren rock	□ wet wall □ upland □	madicolous other (describ	□ spray zone	e □ pool [stream
J=tunnel; MAD=madicolous flow; Cabitats (check all that apply cienega ☐ hillslope ☐ te Environmental Commental Comm	OTH=other /): cave original content	orifice [iparian [hyporheic barren rock	□ wet wall □ upland □	madicolous other (describ	□ spray zone	e □ pool [stream
J=tunnel; MAD=madicolous flow; Cabitats (check all that apply cienega ☐ hillslope ☐ ite Environmental Commental Com	OTH=other /): cave original content	orifice [iparian [hyporheic barren rock	□ wet wall □ upland □	madicolous other (describ	□ spray zone	e □ pool [stream
cienega hillslope ite Environmental Commental Commen	meadow □rij	iparian 🗆	barren rock	□ upland □	other (describ	be):		
olar Radiation: unrise: J F I unset: J F I	its:							
olar Radiation: unrise: J F I unset: J F I								
olar Radiation: unrise: J F		M M	J J	A S	S O S O	N	D D	
unrise: J F l unset: J F l	M A M A	M M	J J	A S	S O S O	N N	D D	
unrise: J F l unset: J F l	M A M A	M M	J J	A S	S O S O	N N	D D	
ınrise: J F l ınset: J F l	M A M A	M M	J J J J	A S	S O S O	N N	D D	
	M A M A	M M	J J	A S	S O S O	N	D	
	M A	M	J J	A :	s o	N	D	
CONDITION AND LAND US								
CONDITION AND LAND US	OT:							
verall site condition and dis		appropriat	te boxes).	oristine nat	tural disturbar	nce anthr	ropogenic di	isturbance
	`							
$\begin{array}{c} \underline{\text{atural Disturbance}} \text{ (if box is} \\ \underline{\text{recent flooding}} \Box \text{ windth} \end{array}$					-			
nthropogenic Disturbance (i roads/OHV trails hikin		-			•	•		ination/use
prehistoric human occupat	•			neation \square iiv	estock grazing	g instoric	numan occu	ipation/use
				1:0 (:)				
ite disturbance comments (u	se to describe al	II disturban	ce other than flo	w modification)):			
land Madification (if how als		(DDE)	(DOCT) in an	-1:1-1- £-1.4-).			1.	
low Modification (if box che open trough/tank	ecked above, ent _pumping	_encaseme	or POSI in ap intexcava	plicable fleids): ationseal	ed cracks	pipe diversionsother (descri	onaa ibe in comm	im diversion ients)
mpact on flow (check approp				•		3a 		
low modification comments								

SITE CODE	S	SITE NAME	DATE.
		GERVIA TVOV	
AMPHIBIAN AND (OTHER WILDLIFE OB	SERVATION	
Amphibians Sur	rvey Conducted:	yes □ no	
Scientific Name	•		
Amphibian Con	nments:		
Wildlife Observ	vations - (check which	groups were directly observed	on the site):
☐ Bird	☐ Mammal	☐ Reptile	
Wildlife Comm	ents (use this field to		d indirect evidence of bird, mammal and reptile presence/use):
	(027 1112 1114 10		
11			

SITE SKETCH MAP

SKETCH MAP CODES: WQ = water quality measurement site PP = photopoint (w/#)DI = discharge measurement site PP = photopoint (w/#)

OR = spring orifice PL = pool location

PO = paleo-orifice FM = flow modification

CH = channel SR = solar radiation reading site

EXTRA PHOTO LOG SHEET

TE CODE:	S	s	SITE NAME:				DATE:
Photo#	Photo Type*	Roll#	Frame#	Time	Hgt (cm)	Photographer	Caption
Photo Reloca	tion Comments:						
Photo Reloca	tion Comments:			ı			
Photo Reloca	tion Comments:	1	1	1	1	1	
Photo Reloca	tion Comments:	1	1	T	1		I
Dhata Dalaga	tion Comments:						
Photo Reloca	lion Comments:	1	1	1	1	1	1
Photo Reloca	tion Comments:						
T Hoto Ttolood	aon comments.						
Photo Reloca	tion Comments:						
Photo Reloca	tion Comments:						
Photo Reloca	tion Comments:			l			
Photo Reloca	tion Comments:						
Photo Reloca	tion Comments:	1		1		T	T
DI + D							
rnoto Reloca	tion Comments:	1	1	1	1		1
Dhoto Dologo	tion Comments:						
	Type Choices: Site	· Landscape	. Feature Fieldw	vork. Fauna	Vegetation Dis	turbance. Other	

2005: APR 14 Page - 5

INVERTEBRATES FORM

SITE COL	DE:	S_		SITE NAME:		DATE:			FORM:	OF
INVERTE	BRATE S	URVEYS	CONDUC	TED AT SITE (check all boxes that	at apply): 🗌 T/spot 🔲 T/swee	ep 🗆 T/sheet 🗆 A/spot 🗆	☐ A/kicknet	☐ A/D-net		
TERRES	TRIAL	AND AQ	UATIC	INVERTEBRATE SURVEY	- QUALITATIVE SAMPLE	NG	START TI	ME	END TI	ME
This datas sampling		sed to doo	cument te	rrestrial invertebrate species su	rveyed using a combination of	sweep netting, spot collecting	and beating/	sheet methods a	and/or aquatic inverte	brates using a spot
Survey		Method		Order	Family	Genus and Species	Voucher C	ollection	Comments	
Type T or A	Spot ✓	Sweep	Sheet 🗸			-	Collected 🗸	# of Specimens		
										,
		_								
							1			
		1]							

INVERTEBRATES FORM

SITE CODE: S_	SITE NAME:	DATE:	FORM: OF
---------------	------------	-------	----------

AQUATIC INVERTEBRATE SURVEY – QUANTITATIVE SAMPLING

Use this datasheet to record aquatic invertebrate species observed and/or collected using quantitative methods (kick net and D-framed net).

Me	thod	Rep #	Order	Family	Genus and Species	Count	Voucher C	ollection	Comments
Kick ✓	D-net ✓	#				#	Collected <	# of Specimens	

Aquatic Habitat	Clay (not visible, smooth)	Fine Gravel (2-15mm, lady bug to marble)	Boulder (>250mm, basketball to car)	6	>95% cover	3	10-25%
Macrophyte % Cover	Silt (not visible to eye, but gritty)	Coarse Gravel (15-65mm, marble to tennis ball)	Bedrock (larger than a car)	5	50-95%	2	1-10%
Algal % Cover	Sand (0.06-2mm, visible to eye)	Cobble (65-250mm, tennis ball to basketball)	Wood (any size)	4	25-50%	1	<1%

VEGETATION SURVEY FORM

SITE CODE	:s	SITI	E NAME:								D .	ATE: _								
VEGETATI(ON SPECIES FORM	OF _		S	TART TIM	IE			EN	D TII	ME									
Species Cove nonvascular. collections we	er Class: Starting with the upp If the identification of a plan- ere made.	permost strati t species is u	um list all nknown pl	species with for ease collect an	all scientific ID sample	names, and assi	cover cl gn a uni	ass for ea	ach specie nown spec	es by g	geomorphi ode as desc	ic type. cribed in	It may be the prote	e helpful ocol. Us	to group e a chec	p by life k mark t	form, e.g. o indicate	tree, sh	rub, graminoid, ollections or vo	forbs, ucher
							Cove	er Class I	by aeoma	orphi	c surface	type (e	nter one	value f	or each	surface	code)		Was Collect	ion Made ?
Full Scientifi	c Name		Unknow	n Species Co	de			, class	Jy goom	o.p	3411400	1900		Tulus I	01 04011		Journal		Voucher?	ID Coll? ✓
									1		-									
	Prominence sc									G	eomorph)					
Number	Class Name	>95% co		Number	Class Na			Definitio		-	Code		Name				Code	Naı	me	
<u>6</u> 5	Dominant Abundant	50-95% co		1	Uncomm Occasion			1-10% cov		-	BW SB		Backy	g Bedro	nck	+	SM PL	Pod	ring Mound	
4	Common	25-50%		0	Rare	- Iui		ew indiv			CS			ial Slop			TE		race	
3	Somewhat common	10-25% (С		Cave				TU		nnel	
										-	СН		Chanr	nel Gradient			MAD OTH	Unf Oth	ocused Madic	olous Flow
										\dashv	HGC		Ciene		L		OIII	Oil	ICI	
													Low G	radient						
											LGC		Ciene	ga						

2005: April 14

VEGETATION SURVEY FORM

SITE CODE:	S	SITE NAME:	DATE:	

Ve	g Strata Classes		Soil Mois	sture Classes (top 10 cm)	Substrate Classes					
Code	Class Name	Code	Class Name	Definition	Code	Class Name	Definition			
Т	tall canopy (>10 m)	6	inundated	standing water in soil	1	Clay	Not visible, smooth			
С	mid-canopy (4-10 m)	5	saturated	completely wet, no standing water	2	Silt	Not visible, gritty			
S	shrub (0-4 m)	4	wet	soil easily sticks together	3	Sand (0.06-2 mm)	Visible, gritty, up to ladybug size			
Н	herbaceous	3	damp	moderate moisture	4	Fine gravel (2-15 mm)	Ladybug to marble			
М	moss/surface cover	2	moist	like after a light rain	5	Coarse gravel (15-65 mm)	Marble to tennis ball			
Α	Aquatic	1	dry	no moisture, soil easily separates	6	Cobble (65-250 mm)	Tennis ball to basketball			
	Prominence Scale					Boulder (>250 mm)	Basketball to car			
Code	Class Name	Code	Class Name	e	8	Bedrock	Larger than a car			
6	Dominant (>95%)	2	Uncommon (1-10%)		WD	Wood	Any size			
5	Abundant (50-95%)	1	Occasional	(<1%)	LI	Litter	Dead organic matter			
4	Common (25-50%)	0	Rare (<<1%	, few individuals	SL	Soil	Mineral soil			
3	< common (10-25%)				ОТ	Other	Use comments field			

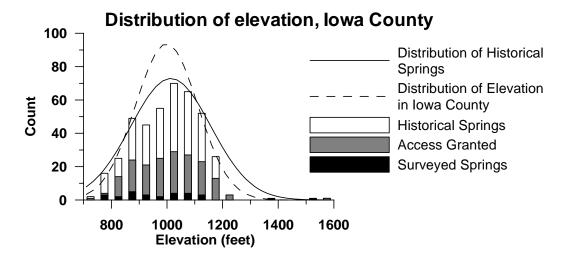
	Veg Strata Cover					Soil Substrate Cover													
Geomorphic Surface Type	Т	С	S	Н	М	Α	Moisture	1	2	3	4	5	6	7	8	WD	LI	SL	Describe

2005: April 14 3

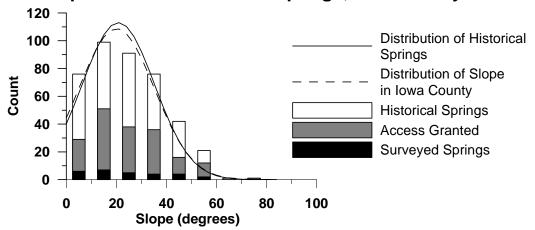
GPS AND GEOMORPHOLOGY DATASHEET

ITE CODE: S	š	SITE NA	ME:					DATE:					
OCATION - GPS (Take o	ne reac	ding at centroid of	site)		ST	ART TIME		END TIME					
UTM's from (check or	ne) : [_ ☐ Map ☐ GPS	- Datu	m NA	AD 83 Zor	ne:	GPS Name a	and Model:					
GPS File Name	GPS File Name Field UTM X Fie				Field UTN	И Y	PDOP	Error +/- (m)		3D Differential Y or N			
GPS comments:		mE				mN							
EOLOGIC UNIT DESCRIP	TION												
Geologic Unit Name		Source Geolog Code	ic Unit		Site Geo Code	ologic Unit	Geologic Un	it Comments <u>:</u>					
Rock Sample Taken:	1			1									
\square yes \square no	2			2									
· - 12 1	3			3	<u> </u>	11		-: ~					
Rock Type and Rock S (check one box for prin		•	-		subtype)	Rock Type	· Characterizatio	on for Primary Geologic Un	<u>ıit</u>				
☐ Sedimentary	☐ Sedimentary ☐ Igneous			etam	norphic	Percent Gr	Grain Shape						
shale		granite	□ marble			Cli	ay (not visible, sm		spherical				
mudstone		granodiorite	quartzite			Sil	It (not visible to ey		oblong				
siltstone		diorite	slate			Sa		other:					
sandstone		gabbro	schist			Fir							
conglomerate		peridotite gneiss			Co	Grain	Orientation						
limestone		rhyolite <u>Carbonate</u>			Co		imbrication						
dolomite		dacite	- □ yes □ no			Bo		random					
evaporites		andesite	Strike		0	Rock Colo	<u>r</u>			other			
□ coal		basalt	Dip		0		/						
Rock type comments:									•				
MERGENCE ENVIRONMI	ENT D	ESCRIPTION											
Emergence Environme	nt (ch	eck one): \square car	ve 🗆 st	ıb-aer	rial 🗌 sub	aqueous-lentic	subaqueous	s-lotic \square other (describe in	n commen	ıts)			
Emergence environme	nt com	nments:											
Subaerial Emergence S	Setting	 g (ck one): □ cl	 nannel		oodplain [terrace c	anvon wall 🗌 r	orairie mountain side o	ther (pleas	se describe)			
Emergence Substrate C					_					<u>re deseries,</u>			
OW FORCING MECHAN Flow Forcing Type (ch		ne). 🗌 gravity	art	esian	geoth	ermal na	tural pressure	anthropogenic pressure	e 🗆 unde	etermined			
Flow forcing mechanism							prossure	mmopogeme pressure					
riow forcing mechanish	ii com	michts.											

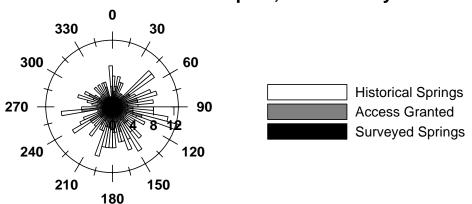
GPS AND GEOMORPHOLOGY DATASHEET

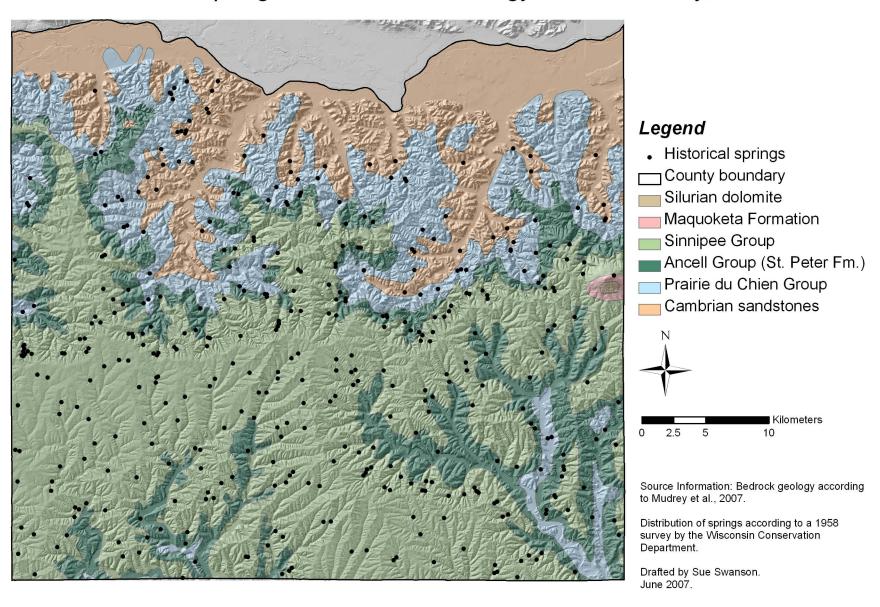

TE CODE: S	SITE NAME:			D	OATE:
DDIC TVDE AND ODIEICE CHADACT	TEDIZATION				
RING TYPE AND ORIFICE CHARACT Orifice Number (check one): \Box sin		iple			
Orifice Geomorphic Type (check on			acture spring tubular	spring \(\Bar\)	contact spring
		limnocrene rheo			eleocrene
 \			\Box mound-reng garden \Box exposure		pocrene
Spring type and orifice comments:					
RING CHANNEL CHARACTERIZATION	ON				
Channel Present (check one): \Box y	res 🗆 no	Number of Channels	S:	Meander D	Distance:(m)
Flow Type (check one): perennia	al 🗌 intermi	ttent ephemeral	Channel Length:	(m)	<u>Channel Slope</u> :deg.
Channel Width (m)			Channel Depth (m)		
	<u> </u>				
Channel profile comments:					
Channel substrate comments:					
Channel Type: spring discharge	dominated	run-off dominated	mixed		
Channel Type Comments:					

WATER QUANTITY AND QUALITY DATASHEET

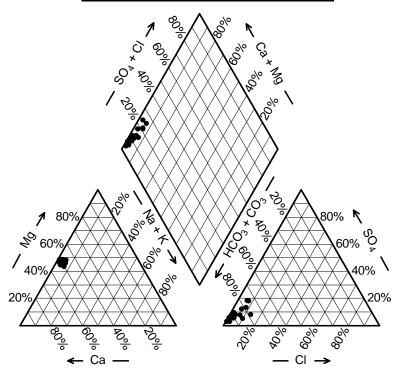

Instrument Type (check one): Model Name Serial Number Description of where discharge measurement	
weir (L/s)	
cutthroat flume (m³/s) volumetric (L/s) other (L/s) WEIR MEASUREMENTS – STAGE ———————————————————————————————————	t was taken:
cutthroat flume (m³/s) cutthroat flume (m³/s) volumetric (L/s) other (L/s) WEIR MEASUREMENTS – STAGE Sm med lg	
□ volumetric (L/s) □ other (L/s) WEIR MEASUREMENTS – STAGE Weir Plate Size Calculated Total Discharge (L/s) Company of the control	
□ other (L/s) WEIR MEASUREMENTS – STAGE Weir Plate Size Calculated Total Discharge (L/s) Company of the property of the propert	
WEIR MEASUREMENTS – STAGE Weir Plate Size Calculated Total Discharge (L/s) Company or Compa	
	umulative charge (L/s)
	umulative charge (L/s)
	narge (L/s)
CURRENT METER MEASUREMENTS Calculated Total Discharge	L/s)
B: 1 (1/) B:	umulative
	charge (L/s)
sm	
	umulative charge (L/s)
Discharge comments:	
Discharge comments:	

WATER QUANTITY AND QUALITY DATASHEET

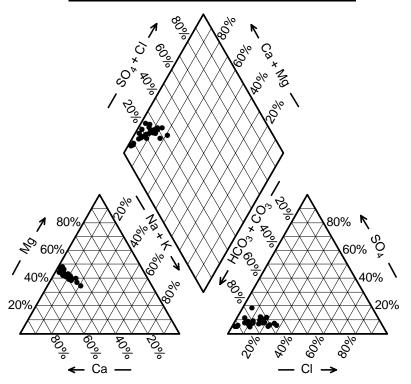

SITE CODE:	s	SITE NAME:			DATE:	
WATED OHALITY	- FIELD BASED MEASUF	PEMENTS		START TIME	END TIME	_
	Taken: \square yes \square no	Troll9000 Seria	al #	Calibration Date:	Time:	
Wicasurements	Taken. yes no					
Water: flow	wing still/pooled					
Depth (cm)	Depth (cm) pH		<u>5/cm)</u>	Dissolved Oxygen (mg	Water Temp	oerature (C ^O)
Average:						
Field Water Qu	ality Measurement Com	ments:				
	- SAMPLES COLLECTED	FOR LABORATORY A	ANALYSIS			
Water Quality S	Sample Type	Sample Taken (check box)	Duplicat (check			
Alkalinity (250	mL poly)]		
Anions (250 m	nL poly, F)]		
Cations (250 r	mL poly, F, HNO ³)]		
Nutrients (60n	nL poly, F, H ₂ SO ⁴⁾]		
¹⁸ O Isotope (6	60mL glass)]		-
² H Isotope (60	mL glass)]		
Comments on c	collection of water qualit	y samples for laborate	ory analysis:			


Slope of land surface near springs, lowa County

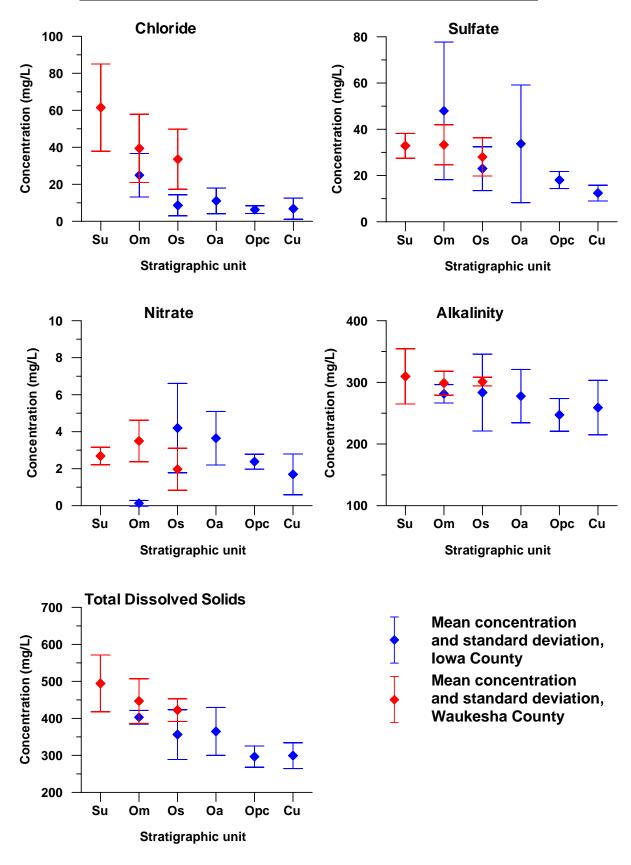
Distribution of aspect, Iowa County

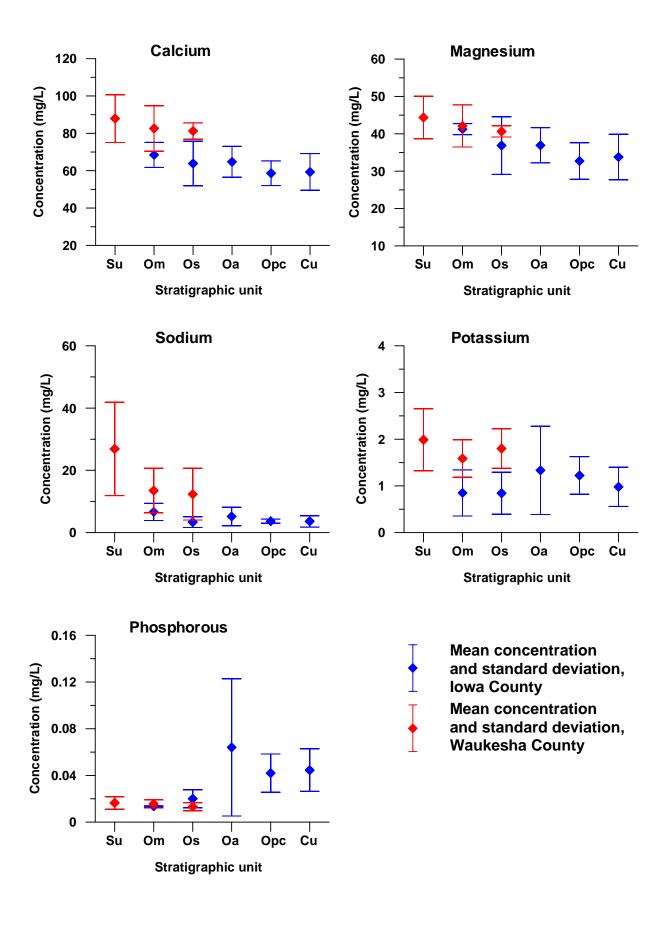


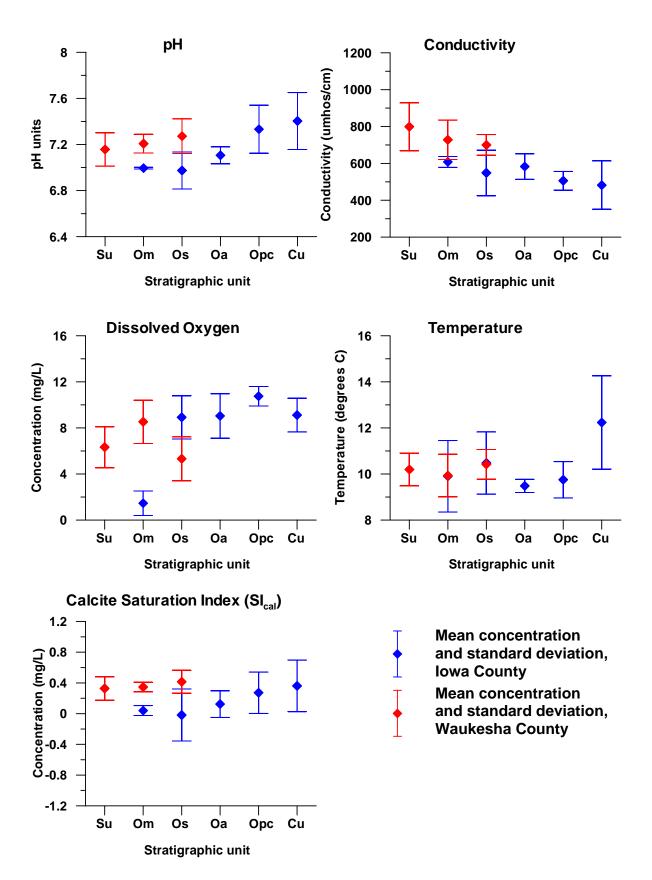
Distribution of Springs and Bedrock Geology in Iowa County, Wisconsin

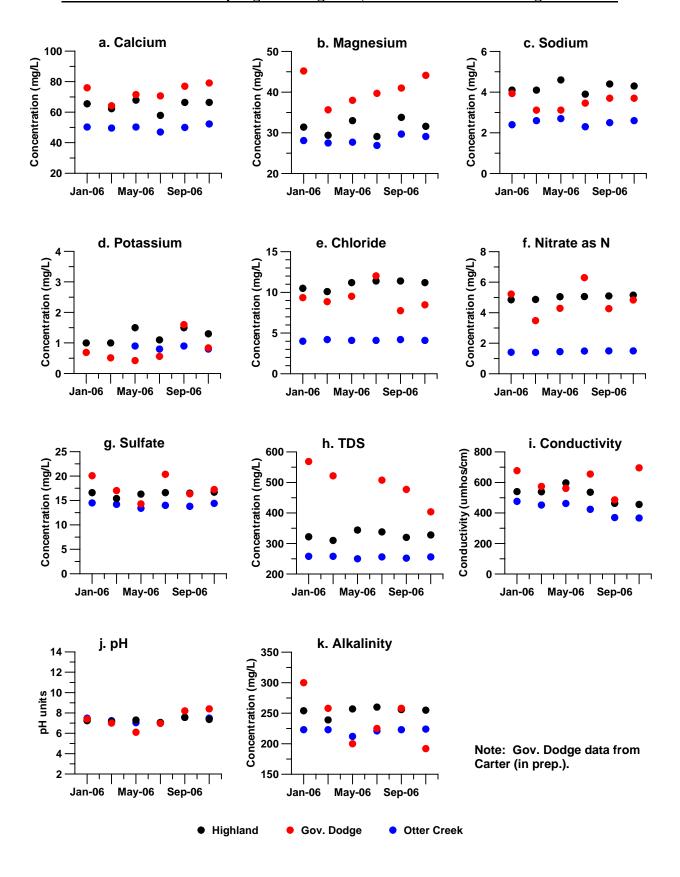


APPENDIX D: Geochemistry Results and Charts

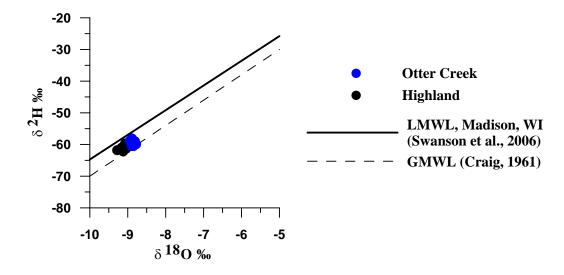

Piper Diagram for Iowa County Springs

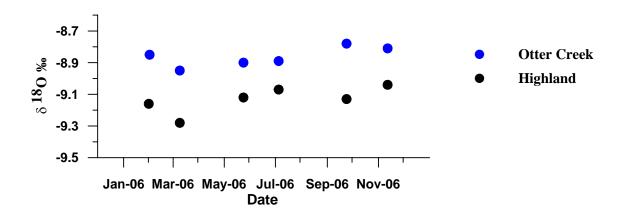


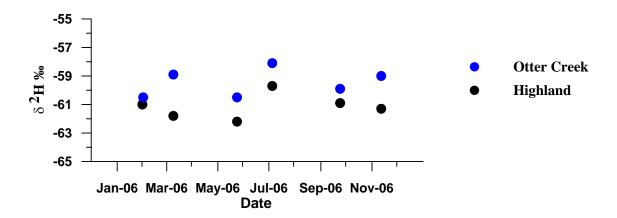

Piper Diagram for Waukesha County Springs

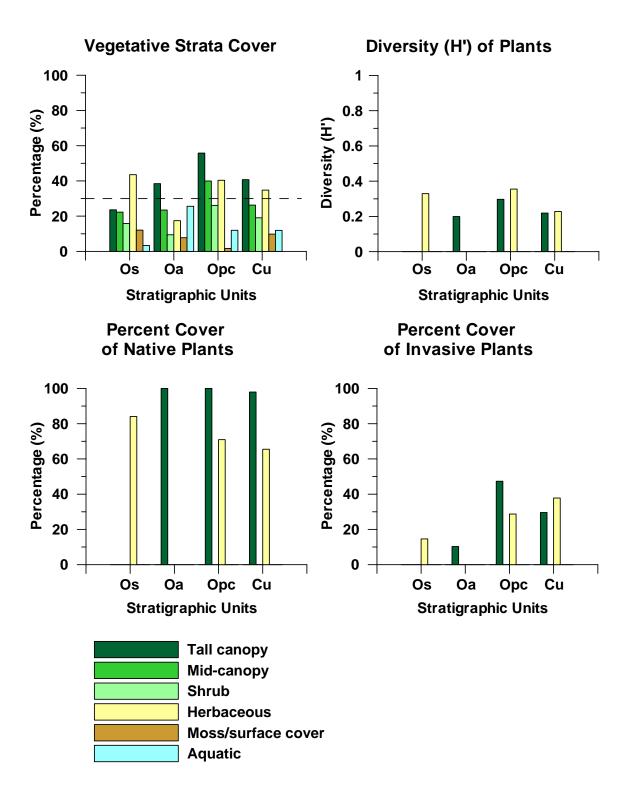


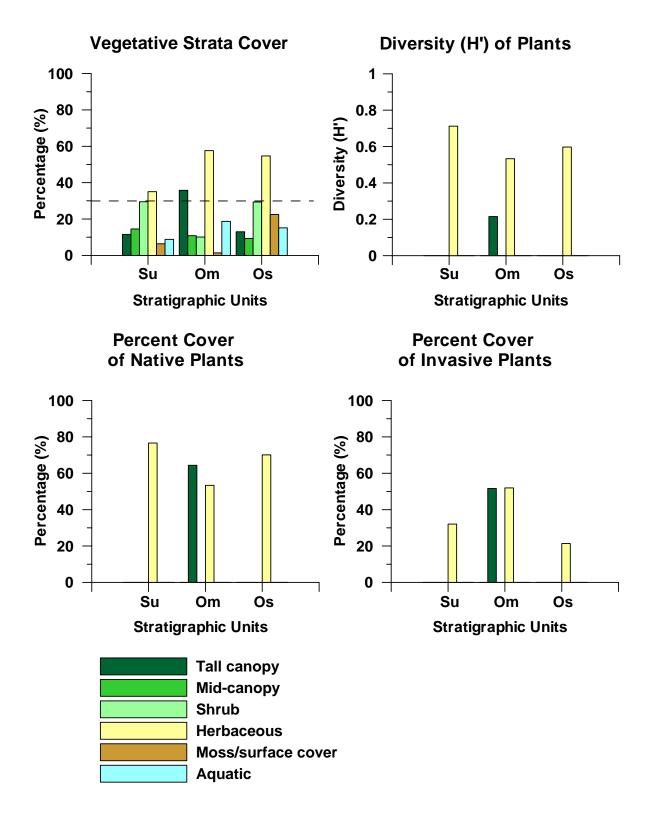
Geochemical Results for Spring Surveys in Iowa and Waukesha Counties








Stable Isotope Results for Springs near Highland and Otter Creek, Iowa County



Iowa Vegetation Diversity Charts

Waukesha Vegetation Diversity Charts

		Average	Relative		Relative	Importance	Importance
Site Code	Plant Name	Coverage	Coverage	Frequency	Frequency	Value	Percentage
	Trees						
250009	Populus deltoides Bartr.	72.5%	68.4%	100.0%	20.0%	0.88	44.2%
250009	Acer negundo L.	27.5%	25.9%	100.0%	20.0%	0.46	23.0%
250009	Salix nigra Marsh.	3.5%	3.3%	100.0%	20.0%	0.23	11.7%
250009	Rhamnus frangula L.	2.0%	1.9%	100.0%	20.0%	0.22	10.9%
250009	Ulmus americana L.	0.5%	0.5%	100.0%	20.0%	0.20	10.2%
	Shrubs						
250009	Rosa multiflora Thunb. Ex Murr	2.0%	80.0%	100.0%	50.0%	1.30	65.0%
250009	Lonicera sp.	0.5%	20.0%	100.0%	50.0%	0.70	35.0%
	Herbaceous						
250009	Nasturtium nasturtium-aquaticum	72.5%	76.6%	100.0%	18.8%	0.95	47.7%
250009	Pastinaca sativa L.	17.5%	18.5%	100.0%	18.8%	0.37	18.6%
250009	Alliaria petiola	2.0%	2.1%	100.0%	18.8%	0.21	10.4%
250009	Arctium L.	0.5%	0.5%	100.0%	18.8%	0.19	9.6%
250009	Cirsium arvense L.	0.5%	0.5%	100.0%	18.8%	0.19	9.6%
250009	Phalaris arundinacea L.	1.7%	1.8%	33.3%	6.3%	0.08	4.0%

Site Code		Average Coverage	Relative Coverage	Frequency	Relative Frequency	Importance Value	Importance Percentage
	Vines						
250022	Vitis sp.	0.1%	100.0%	33.3%	100.0%	2.00	100.0%
	Trees						
250022	Prunus pennsylvanica L. fils	0.3%	66.7%	66.7%	66.7%	1.33	66.7%
250022	Juglans nigra L.	0.2%	33.3%	33.3%	33.3%	0.67	33.3%
	Shrubs						
250022	Cornus sp.	6.0%	33.3%	66.7%	33.3%	0.67	33.3%
250022	Lonicera sp.	6.0%	33.3%	66.7%	33.3%	0.67	33.3%
250022	Ribes sp.	5.8%	32.4%	33.3%	16.7%	0.49	24.5%
250022	Viburnum sp.	0.2%	0.9%	33.3%	16.7%	0.18	8.8%
	Herbaceous						
250022	Poaceae	12.5%	78.5%	33.3%	25.0%	1.04	51.8%
250022	Salix babylonica L.	3.4%	21.5%	100.0%	75.0%	0.96	48.2%

Site Code	e Plant Name Vines	Average Coverage	Relative Coverage	Frequency	Relative Frequency	Importance Value	Importance Percentage
250024	Vitis sp.	0.4%	100.0%	33.3%	100.0%	2.00	100.0%
	Trees						
250024	Acer saccharum Marsh.	7.5%	59.4%	100.0%	27.3%	0.87	43.3%
250024	Prunus sp.	3.9%	30.5%	66.7%	18.2%	0.49	24.3%
250024	Carya sp.	0.4%	3.2%	66.7%	18.2%	0.21	10.7%
250024	Juglans nigra L.	0.1%	1.0%	66.7%	18.2%	0.19	9.6%
250024	Tilia americana L.	0.4%	3.0%	33.3%	9.1%	0.12	6.0%
250024	Ulmus rubra Muhl.	0.4%	3.0%	33.3%	9.1%	0.12	6.0%
	Shrubs						
250024	Lonicera sp.	30.0%	46.9%	100.0%	33.3%	0.80	40.1%
250024	Ribes sp.	29.1%	45.5%	66.7%	22.2%	0.68	33.9%
250024	Viburnum sp.	3.9%	6.0%	66.7%	22.2%	0.28	14.1%
250024	Rosa sp.	1.0%	1.6%	66.7%	22.2%	0.24	11.9%
	Herbaceous						
250024	Poaceae	29.1%	54.0%	66.7%	11.8%	0.66	32.9%
250024	Alliaria petiola	13.2%	24.5%	66.7%	11.8%	0.36	18.1%
250024	Impatiens capensis	4.8%	8.9%	66.7%	11.8%	0.21	10.3%
250024	Solidago sp.	3.9%	7.1%	66.7%	11.8%	0.19	9.5%
250024	Carex sp.	1.4%	2.5%	66.7%	11.8%	0.14	7.2%
250024	Aster sp.	0.6%	1.2%	66.7%	11.8%	0.13	6.5%
250024	Arctium L.	0.5%	0.9%	66.7%	11.8%	0.13	6.3%
250024	Phalaris arundinacea L.	0.1%	0.2%	66.7%	11.8%	0.12	6.0%
250024	Arisaema sp.	0.4%	0.7%	33.3%	5.9%	0.07	3.3%

		Average	Relative		Relative	Importance	Importance
Site Code	e Plant Name	Coverage	Coverage	Frequency	Frequency	Value	Percentage
	Trees						
250028	Acer negundo L.	0.1%	50.0%	25.0%	50.0%	1.00	50.0%
250028	Tilia americana L.	0.1%	50.0%	25.0%	50.0%	1.00	50.0%
	Shrubs						
250028	Diervilla lonicera	0.5%	90.9%	25.0%	50.0%	1.41	70.5%
250028	Rosa multiflora Thunb. Ex Murr	0.1%	9.1%	25.0%	50.0%	0.59	29.5%
	Herbaceous						
250028	Nasturtium nasturtium-aquaticum	16.0%	49.7%	50.0%	8.7%	0.58	29.2%
250028	Phalaris arundinacea L.	11.3%	34.9%	100.0%	17.4%	0.52	26.2%
250028	Impatiens capensis	1.6%	5.0%	100.0%	17.4%	0.22	11.2%
250028	Angelica atropurpurea L.	1.6%	4.8%	100.0%	17.4%	0.22	11.1%
250028	Solidago sp.	1.5%	4.7%	100.0%	17.4%	0.22	11.0%
250028	Alliaria petiola	0.1%	0.3%	50.0%	8.7%	0.09	4.5%
250028	Pteridophyta	0.1%	0.4%	25.0%	4.3%	0.05	2.4%
250028	Maianthemum racemosum	0.0%	0.1%	25.0%	4.3%	0.04	2.2%
250028	Solanum dulcamara	0.0%	0.1%	25.0%	4.3%	0.04	2.2%

		Average	Relative		Relative	Importance	Importance
Site Code	Plant Name	Coverage	Coverage	Frequency	Frequency	Value	Percentage
	Trees						
250030	Quercus macrocarpa Michx.	0.0%	1.7%	25.0%	20.0%	0.22	10.8%
250030	Rhamnus frangula L.	0.0%	3.4%	25.0%	20.0%	0.23	11.7%
250030	Ulmus rubra Muhl.	0.7%	94.9%	75.0%	60.0%	1.55	77.5%
	Herbaceous						
250030	Angelica atropurpurea L.	4.8%	6.4%	75.0%	27.3%	0.34	16.8%
250030	Carex sp.	0.5%	0.6%	75.0%	27.3%	0.28	14.0%
250030	Nasturtium nasturtium-aquaticum	65.3%	87.7%	50.0%	18.2%	1.06	53.0%
250030	Pastinaca sativa L.	0.3%	0.3%	25.0%	9.1%	0.09	4.7%
250030	Poaceae	3.7%	4.9%	50.0%	18.2%	0.23	11.5%

Site Code	e Plant Name Vines	Average Coverage	Relative Coverage	Frequency	Relative Frequency	Importance Value	Importance Percentage
250045	Parthenocissus quinquefolia Trees	0.5%	100.0%	100.0%	100.0%	2.00	100.0%
250045	Acer saccharum Marsh.	72.5%	98.0%	100.0%	33.3%	1.31	65.7%
250045	Ostrya virginiana Koch.	1.0%	1.3%	100.0%	33.3%	0.35	17.3%
250045	Prunus sp.	0.5%	0.7%	50.0%	16.7%	0.17	8.7%
250045	Ulmus sp. Shrubs	0.1%	0.1%	50.0%	16.7%	0.17	8.4%
250045	Cornus sp.	4.6%	47.6%	100.0%	40.0%	0.88	43.8%
250045	Ribes sp.	4.6%	47.6%	100.0%	40.0%	0.88	43.8%
250045	Viburnum sp.	0.5%	4.7%	50.0%	20.0%	0.25	12.4%
	Herbaceous						
250045	Impatiens capensis	16.3%	46.2%	100.0%	11.1%	0.57	28.6%
250045	Geranium L.	15.8%	44.9%	100.0%	11.1%	0.56	28.0%
250045	Polygonatum biflorum	1.0%	2.7%	100.0%	11.1%	0.14	6.9%
250045	Adiantum pedatum L.	0.5%	1.4%	100.0%	11.1%	0.13	6.3%
250045	Pteridophyta	0.5%	1.4%	100.0%	11.1%	0.13	6.3%
250045	Trillium sp.	0.5%	1.4%	100.0%	11.1%	0.13	6.3%
250045	Poaceae	0.3%	0.8%	50.0%	5.6%	0.06	3.2%
250045	Viola sp.	0.2%	0.6%	50.0%	5.6%	0.06	3.1%
250045	Carex sp.	0.1%	0.1%	50.0%	5.6%	0.06	2.8%
250045	Cirsium sp.	0.1%	0.1%	50.0%	5.6%	0.06	2.8%
250045	Laportea canadensis	0.1%	0.1%	50.0%	5.6%	0.06	2.8%
250045	Streptopus sp.	0.1%	0.1%	50.0%	5.6%	0.06	2.8%

		Average	Relative		Relative	Importance	Importance
Site Code	e Plant Name	Coverage	Coverage	Frequency	Frequency	Value	Percentage
	Trees						
250101	Acer negundo L.	2.3%	87.0%	25.0%	33.3%	1.20	60.1%
250101	Ulmus americana L.	0.2%	8.7%	25.0%	33.3%	0.42	21.0%
250101	Quercus velutina Lam.	0.1%	4.3%	25.0%	33.3%	0.38	18.8%
	Shrubs						
250101	Rosa multiflora Thunb. Ex Murr	0.2%	100.0%	25.0%	100.0%	2.00	100.0%
	Herbaceous						
250101	Impatiens capensis	8.0%	50.9%	50.0%	18.2%	0.69	34.5%
250101	Cirsium arvense L.	2.4%	15.2%	50.0%	18.2%	0.33	16.7%
250101	Galium sp.	2.3%	14.3%	25.0%	9.1%	0.23	11.7%
250101	Geranium L.	2.3%	14.3%	25.0%	9.1%	0.23	11.7%
250101	Urtica L.	0.4%	2.4%	50.0%	18.2%	0.21	10.3%
250101	Pteridophyta	0.3%	1.6%	50.0%	18.2%	0.20	9.9%
250101	Carex sp.	0.2%	1.4%	25.0%	9.1%	0.11	5.3%

		Average	Relative		Relative	Importance	Importance
Site Code	Plant Name	Coverage	Coverage	Frequency	Frequency	Value	Percentage
	Trees						
250106	Acer negundo L.	12.8%	69.8%	100.0%	60.0%	1.30	64.9%
250106	Salix nigra Marsh.	5.6%	30.2%	66.7%	40.0%	0.70	35.1%
	Herbaceous						
250106	Poaceae	49.3%	60.6%	100.0%	17.6%	0.78	39.1%
250106	Asclepias sp.	22.3%	27.4%	100.0%	17.6%	0.45	22.5%
250106	Phalaris arundinacea L.	8.3%	10.2%	100.0%	17.6%	0.28	13.9%
250106	Achillea sp.	0.5%	0.6%	100.0%	17.6%	0.18	9.1%
250106	Cirsium sp.	0.5%	0.6%	100.0%	17.6%	0.18	9.1%
250106	Solidago sp.	0.5%	0.6%	66.7%	11.8%	0.12	6.2%

Site Code	e Plant Name Trees	Average Coverage	Relative Coverage	Frequency	Relative Frequency	Importance Value	Importance Percentage
250174	Quercus velutina Lam.	50.5%	52.1%	100.0%	20.0%	0.72	36.0%
250174	Acer saccharum Marsh.	39.5%	40.7%	100.0%	20.0%	0.61	30.4%
250174	Ulmus sp.	0.5%	0.5%	100.0%	20.0%	0.21	10.3%
250174	Fraxinus nigra Marsh.	3.0%	3.1%	50.0%	10.0%	0.13	6.5%
250174	Fraxinus pennsylvanica Marsh.	3.0%	3.1%	50.0%	10.0%	0.13	6.5%
250174	Prunus pennsylvanica L. fils	0.3%	0.3%	50.0%	10.0%	0.10	5.2%
250174	Crataegus sp.	0.2%	0.2%	50.0%	10.0%	0.10	5.1%
	Shrubs						
250174	Ribes hirtellum	0.3%	50.0%	50.0%	50.0%	1.00	50.0%
250174	Rosa multiflora Thunb. Ex Murr	0.3%	50.0%	50.0%	50.0%	1.00	50.0%
	Herbaceous						
250174	Poaceae	0.3%	33.3%	50.0%	20.0%	0.53	26.7%
250174	Cirsium arvense L.	0.2%	16.7%	50.0%	20.0%	0.37	18.3%
250174	Impatiens capensis	0.2%	16.7%	50.0%	20.0%	0.37	18.3%
250174	Plantago major L.	0.2%	16.7%	50.0%	20.0%	0.37	18.3%
250174	Urtica L.	0.2%	16.7%	50.0%	20.0%	0.37	18.3%

Site Code	e Plant Name Trees	Average Coverage	Relative Coverage	Frequency	Relative Frequency	Importance Value	Importance Percentage
250195	Quercus velutina Lam.	17.5%	41.8%	100.0%	16.7%	0.58	29.2%
250195	Tilia americana L.	17.5%	41.8%	100.0%	16.7%	0.58	29.2%
250195	Ribes americanum	4.5%	10.8%	50.0%	8.3%	0.19	9.5%
250195	Ulmus rubra Muhl.	1.0%	2.3%	100.0%	16.7%	0.19	9.5%
250195	Acer negundo L.	0.5%	1.2%	100.0%	16.7%	0.18	8.9%
250195	Acer saccharum Marsh.	0.5%	1.1%	100.0%	16.7%	0.18	8.9%
250195	Ribes sp.	0.5%	1.1%	50.0%	8.3%	0.09	4.7%
	Herbaceous						
250195	Gernanium maculatum L.	15.8%	68.5%	50.0%	10.0%	0.78	39.2%
250195	Laportea canadensis	5.0%	21.7%	100.0%	20.0%	0.42	20.9%
250195	Adiantum pedatum L.	0.5%	2.0%	50.0%	10.0%	0.12	6.0%
250195	Alliaria petiola	0.5%	2.0%	50.0%	10.0%	0.12	6.0%
250195	Poaceae	0.5%	2.0%	50.0%	10.0%	0.12	6.0%
250195	Anemone sp.	0.2%	1.0%	50.0%	10.0%	0.11	5.5%
250195	Galium sp.	0.2%	1.0%	50.0%	10.0%	0.11	5.5%
250195	Osmorhiza sp.	0.2%	1.0%	50.0%	10.0%	0.11	5.5%
250195	Smilacina stellata	0.2%	1.0%	50.0%	10.0%	0.11	5.5%

Site Code	Plant Name Trees	Average Coverage	Relative Coverage	Frequency	Relative Frequency	Importance Value	Importance Percentage
250200	Quercus sp.	12.1%	72.6%	100.0%	25.0%	0.98	48.8%
250200	Acer negundo L.	0.5%	3.0%	100.0%	25.0%	0.28	14.0%
250200	Malus sp.	1.8%	10.8%	66.7%	16.7%	0.28	13.8%
250200	Robinina pseudoacacia L.	1.8%	10.8%	66.7%	16.7%	0.28	13.8%
250200	Ulmus sp. Shrubs	0.5%	2.7%	66.7%	16.7%	0.19	9.7%
250200	Rosa multiflora Thunb. Ex Murr Herbaceous	8.3%	100.0%	66.7%	100.0%	2.00	100.0%
250200	Poaceae	47.4%	97.2%	100.0%	23.1%	1.20	60.1%
250200	Cirsium sp.	0.5%	1.0%	100.0%	23.1%	0.24	12.1%
250200	Dalea candida	0.5%	1.0%	100.0%	23.1%	0.24	12.1%
250200	Taraxacum sp.	0.2%	0.5%	66.7%	15.4%	0.16	7.9%
250200	Phalaris arundinacea L.	0.2%	0.3%	66.7%	15.4%	0.16	7.8%

Site Code	e Plant Name	Average Coverage	Relative Coverage	Frequency	Relative Frequency	Importance Value	Importance Percentage
	Vines	J	S	1 0			5
250205	Vitis sp.	0.2%	100.0%	100.0%	100.0%	2.00	100.0%
	Trees						
250205	Acer negundo L.	12.9%	55.8%	100.0%	30.0%	0.86	42.9%
250205	Ribes sp.	6.8%	29.2%	66.7%	20.0%	0.49	24.6%
250205	Rhamnus frangula L.	1.7%	7.1%	66.7%	20.0%	0.27	13.6%
250205	Ulmus rubra Muhl.	1.5%	6.5%	33.3%	10.0%	0.16	8.2%
250205	Quercus velutina Lam.	0.2%	0.6%	33.3%	10.0%	0.11	5.3%
250205	Tilia americana L.	0.2%	0.6%	33.3%	10.0%	0.11	5.3%
	Herbaceous						
250205	Poaceae	11.4%	49.4%	66.7%	20.0%	0.69	34.7%
250205	Impatiens capensis	5.4%	23.4%	66.7%	20.0%	0.43	21.7%
250205	Galium sp.	3.0%	13.0%	66.7%	20.0%	0.33	16.5%
250205	Cirsium arvense L.	1.7%	7.1%	66.7%	20.0%	0.27	13.6%
250205	Pastinaca sativa L.	1.7%	7.1%	66.7%	20.0%	0.27	13.6%

Site Code		Average Coverage	Relative Coverage	Frequency	Relative Frequency	Importance Value	Importance Percentage
250210	Trees	24.00/	45.00/	100.00/	15.00/	0.62	20.00/
250210	Ulmus sp	34.9%	45.8%	100.0%	15.8%	0.62	30.8%
250210	Ribes sp.	15.8%	20.7%	66.7%	10.5%	0.31	15.6%
250210	Quercus sp.	5.0%	6.6%	100.0%	15.8%	0.22	11.2%
250210	Carya ovata Koch.	4.8%	6.3%	100.0%	15.8%	0.22	11.0%
250210	Acer negundo L.	5.4%	7.1%	66.7%	10.5%	0.18	8.8%
250210	Tilia americana L.	5.4%	7.1%	66.7%	10.5%	0.18	8.8%
250210	Acer sacchariunum	4.5%	5.9%	66.7%	10.5%	0.16	8.2%
250210	Juglans nigra L.	0.5%	0.6%	66.7%	10.5%	0.11	5.6%
	Herbaceous						
250210	Poaceae	4.8%	35.6%	66.7%	25.0%	0.61	30.3%
250210	Smilacina stellata	4.5%	33.7%	33.3%	12.5%	0.46	23.1%
250210	Impatiens capensis	1.3%	9.9%	66.7%	25.0%	0.35	17.5%
250210	Nasturtium nasturtium-aquaticum	1.9%	14.0%	33.3%	12.5%	0.27	13.3%
250210	Arisaema sp.	0.5%	3.4%	33.3%	12.5%	0.16	7.9%
250210	Trillium sp	0.5%	3.4%	33.3%	12.5%	0.16	7.9%

Site Code	Plant Name	Average Coverage	Relative Coverage	Frequency	Relative Frequency	Importance Value	Importance Percentage
250215	Acer negundo L.	37.5%	46.4%	100.0%	25.0%	0.71	35.7%
250215	Populus deltoides Bartr.	37.5%	46.4%	100.0%	25.0%	0.71	35.7%
250215	Fraxinus sp.	0.5%	0.6%	66.7%	16.7%	0.17	8.6%
250215	Juglans nigra L.	0.5%	0.6%	66.7%	16.7%	0.17	8.6%
250215	Ribes sp.	4.5%	5.6%	33.3%	8.3%	0.14	6.9%
250215	Prunus sp.	0.5%	0.6%	33.3%	8.3%	0.09	4.4%
	Herbaceous						
250215	Impatiens capensis	41.0%	54.0%	100.0%	25.0%	0.79	39.5%
250215	Angelica atropurpurea L.	17.5%	23.1%	100.0%	25.0%	0.48	24.0%
250215	Poaceae	16.0%	21.1%	66.7%	16.7%	0.38	18.9%
250215	Carex sp.	0.5%	0.6%	66.7%	16.7%	0.17	8.6%
250215	Geranium L.	0.5%	0.6%	33.3%	8.3%	0.09	4.5%
250215	Urtica L.	0.5%	0.6%	33.3%	8.3%	0.09	4.5%

		Average	Relative		Relative	Importance	Importance
Site Code	e Plant Name	Coverage	Coverage	Frequency	Frequency	Value	Percentage
	Trees						
250235	Crataegus sp.	9.8%	99.5%	66.7%	66.7%	1.66	83.1%
250235	Robinina pseudoacacia L.	0.1%	0.5%	33.3%	33.3%	0.34	16.9%
	Herbaceous						
250235	Nasturtium sp.	22.0%	59.2%	66.7%	28.6%	0.88	43.9%
250235	Poaceae	14.8%	39.7%	66.7%	28.6%	0.68	34.1%
250235	Solidago sp.	0.4%	0.9%	66.7%	28.6%	0.30	14.8%
250235	Solanum sp.	0.1%	0.1%	33.3%	14.3%	0.14	7.2%

Site Code		Average Coverage	Relative Coverage	Frequency	Relative Frequency	Importance Value	Importance Percentage
250240	Trees Ulmus americana L.	2.1%	50.3%	100.0%	30.8%	0.81	40.5%
	Salix nigra Marsh.	1.4%	33.9%	100.0%	30.8%	0.65	32.4%
	Prunus serotina Ehrh.	0.5%	12.1%	100.0%	30.8%	0.43	21.4%
250240	Quercus macrocarpa Michx.	0.2%	3.6%	25.0%	7.7%	0.11	5.7%
	Herbaceous						
250240	Poaceae	25.3%	64.5%	100.0%	25.0%	0.89	44.7%
250240	Pastinaca sativa L.	5.6%	14.3%	100.0%	25.0%	0.39	19.6%
250240	Carex sp.	5.6%	14.2%	100.0%	25.0%	0.39	19.6%
250240	Barbarea sp.	2.8%	7.0%	100.0%	25.0%	0.32	16.0%

Site Code	Plant Name	Average Coverage	Relative Coverage	Frequency	Relative Frequency	Importance Value	Importance Percentage
250248	Juglans nigra L. Shrubs	0.5%	100.0%	66.7%	100.0%	2.00	100.0%
250248	Ribes sp.	4.8%	90.9%	66.7%	50.0%	1.41	70.5%
250248	Ribes hirtellum	0.5%	9.1%	66.7%	50.0%	0.59	29.5%
	Herbaceous						
250248	Carex sp.	29.3%	43.3%	100.0%	17.6%	0.61	30.5%
250248	Poaceae	27.5%	40.7%	100.0%	17.6%	0.58	29.2%
250248	Impatiens capensis	5.0%	7.4%	100.0%	17.6%	0.25	12.5%
250248	Pastinaca sativa L.	4.8%	7.1%	100.0%	17.6%	0.25	12.4%
250248	Juncus sp.	0.5%	0.7%	100.0%	17.6%	0.18	9.2%
	Equisetum sp.	0.5%	0.7%	66.7%	11.8%	0.12	6.2%

Site Code	Plant Name	Average Coverage	Relative Coverage	Frequency	Relative Frequency	Importance Value	Importance Percentage
250259	Juniperus virginiana L.	21.5%	41.6%	100.0%	37.5%	0.79	39.5%
250259	Ribes sp.	14.9%	28.9%	66.7%	25.0%	0.54	26.9%
250259	Prunus sp.	14.9%	28.8%	33.3%	12.5%	0.41	20.6%
250259	Quercus sp.	0.2%	0.4%	33.3%	12.5%	0.13	6.5%
250259	Tilia americana L.	0.2%	0.4%	33.3%	12.5%	0.13	6.5%
	Shrubs						
250259	Lonicera sp.	15.2%	100.0%	100.0%	100.0%	2.00	100.0%
	Herbaceous						
250259	Poaceae	31.9%	41.9%	66.7%	14.3%	0.56	28.1%
250259	Urtica L.	16.7%	21.9%	100.0%	21.4%	0.43	21.6%
250259	Pastinaca sativa L.	16.6%	21.8%	66.7%	14.3%	0.36	18.1%
250259	Arctium L.	4.8%	6.3%	100.0%	21.4%	0.28	13.8%
250259	Impatiens capensis	4.0%	5.3%	66.7%	14.3%	0.20	9.8%
250259	Phalaris arundinacea L.	2.2%	2.9%	66.7%	14.3%	0.17	8.6%

Site Code	e Plant Name	Average Coverage	Relative Coverage	Frequency	Relative Frequency	Importance Value	Importance Percentage
2100 0000	Trees	00, 01 mg 0	00,01480	- requesting	rroquerrey	, 0.2020	- or oursingo
250296	Malus sp.	33.3%	73.9%	100.0%	30.0%	1.04	52.0%
250296	Acer negundo L.	3.4%	7.6%	100.0%	30.0%	0.38	18.8%
250296	Juglans nigra L.	4.8%	10.6%	66.7%	20.0%	0.31	15.3%
250296	Rhamnus sp.	3.3%	7.2%	33.3%	10.0%	0.17	8.6%
250296	Robinina pseudoacacia L.	3.3%	7.2%	33.3%	10.0%	0.17	8.6%
250296	Populus deltoides Bartr.	0.2%	0.4%	33.3%	10.0%	0.10	5.2%
250296	Quercus velutina Lam.	0.2%	0.4%	33.3%	10.0%	0.10	5.2%
250296	Ulmus sp.	0.2%	0.4%	33.3%	10.0%	0.10	5.2%
	Shrubs						
250296	Viburnum sp.	12.9%	29.7%	100.0%	33.3%	0.63	31.5%
250296	Lonicera sp.	12.9%	29.7%	66.7%	22.2%	0.52	25.9%
250296	Ribes sp.	12.9%	29.7%	66.7%	22.2%	0.52	25.9%
250296	Rosa sp.	4.8%	10.9%	66.7%	22.2%	0.33	16.6%
	Herbaceous						
250296	Poaceae	0.5%	74.5%	66.7%	66.7%	1.41	70.6%
250296	Leonurus cardiaca L.	0.2%	25.5%	33.3%	33.3%	0.59	29.4%

Site Code		Average Coverage	Relative Coverage	Frequency	Relative Frequency	Importance Value	Importance Percentage
250200	Trees	0.10/	50.00/	50.0%	50.0%	1.00	50.0%
250309	Ostrya virginiana Koch.	0.1%	50.0%				
250309	Tilia americana L.	0.1%	50.0%	50.0%	50.0%	1.00	50.0%
	Shrubs						
250309	Rosa multiflora Thunb. Ex Murr	5.0%	64.5%	100.0%	50.0%	1.15	57.3%
250309	Lonicera sp.	2.8%	35.5%	100.0%	50.0%	0.85	42.7%
	Herbaceous						
250309	Nasturtium nasturtium-aquaticum	38.8%	55.8%	100.0%	16.7%	0.72	36.2%
250309	Poaceae	17.5%	25.2%	100.0%	16.7%	0.42	20.9%
250309	Phalaris arundinacea L.	5.0%	7.2%	100.0%	16.7%	0.24	11.9%
250309	Scirpus sp.	5.0%	7.2%	100.0%	16.7%	0.24	11.9%
250309	Cirsium arvense L.	2.8%	4.0%	100.0%	16.7%	0.21	10.3%
250309	Solanum sp.	0.5%	0.7%	100.0%	16.7%	0.17	8.7%

Site Code	e Plant Name Trees	Average Coverage	Relative Coverage	Frequency	Relative Frequency	Importance Value	Importance Percentage
250331	Carya ovata Koch.	8.5%	26.9%	75.0%	17.6%	0.45	22.3%
250331	Fraxinus sp.	6.9%	21.8%	75.0%	17.6%	0.39	19.7%
250331	Populus deltoides Bartr.	0.3%	0.9%	50.0%	11.8%	0.13	6.4%
250331	Quercus alba L.	6.8%	21.3%	50.0%	11.8%	0.33	16.5%
250331	Quercus velutina Lam.	7.3%	22.9%	75.0%	17.6%	0.41	20.3%
250331	Robinina pseudoacacia L.	1.7%	5.2%	50.0%	11.8%	0.17	8.5%
250331	Ulmus sp.	0.3%	0.9%	50.0%	11.8%	0.13	6.4%
	Shrubs						
250331	Ribes sp.	3.2%	31.3%	75.0%	50.0%	0.81	40.7%
250331	Rosa multiflora Thunb. Ex Murr	6.9%	68.7%	75.0%	50.0%	1.19	59.3%
	Herbaceous						
250331	Laportea canadensis	3.0%	5.4%	50.0%	33.3%	0.39	19.4%
250331	Poaceae	52.6%	94.6%	100.0%	66.7%	1.61	80.6%

		Average	Relative		Relative	Importance	Importance
Site Code	e Plant Name	Coverage	Coverage	Frequency	Frequency	Value	Percentage
	Herbaceous						
250334	Carex sp.	34.3%	49.9%	100.0%	16.7%	0.67	33.3%
250334	Impatiens capensis	20.3%	29.5%	100.0%	16.7%	0.46	23.1%
250334	Lemna sp.	7.3%	10.6%	100.0%	16.7%	0.27	13.6%
250334	Poaceae	5.4%	7.9%	100.0%	16.7%	0.25	12.3%
250334	Eupatorium perfoliatum	0.5%	0.7%	66.7%	11.1%	0.12	5.9%
250334	Eupatoriadelphus maculatus	0.5%	0.7%	33.3%	5.6%	0.06	3.1%
250334	Phalaris arundinacea L.	0.3%	0.4%	33.3%	5.6%	0.06	3.0%
250334	Solidago sp.	0.3%	0.4%	33.3%	5.6%	0.06	3.0%
250334	Scirpus sp.	0.0%	0.0%	33.3%	5.6%	0.06	2.8%

Site Code	e Plant Name	Average Coverage	Relative Coverage	Frequency	Relative Frequency	Importance Value	Importance Percentage
	Trees	<u> </u>	J				J
250380	Salix sp.	0.1%	50.0%	50.0%	50.0%	1.00	50.0%
250380	Tilia americana L. Shrubs	0.1%	50.0%	50.0%	50.0%	1.00	50.0%
250380	Ribes americanum	0.1%	33.3%	50.0%	33.3%	0.67	33.3%
250380	Rosa multiflora Thunb. Ex Murr	0.1%	33.3%	50.0%	33.3%	0.67	33.3%
250380	Rubus occidentalis L.	0.1%	33.3%	50.0%	33.3%	0.67	33.3%
	Herbaceous						
250380	Carex sp.	0.5%	18.3%	50.0%	8.3%	0.27	13.3%
250380	Impatiens pallida	0.5%	18.3%	50.0%	8.3%	0.27	13.3%
250380	Poaceae	0.5%	18.3%	50.0%	8.3%	0.27	13.3%
250380	Angelica atropurpurea L.	0.5%	16.5%	50.0%	8.3%	0.25	12.4%
250380	Lemna sp.	0.5%	16.5%	50.0%	8.3%	0.25	12.4%
250380	Alliaria petiola	0.1%	1.8%	50.0%	8.3%	0.10	5.1%
250380	Arctium minus	0.1%	1.8%	50.0%	8.3%	0.10	5.1%
250380	Dioscorea villosa	0.1%	1.8%	50.0%	8.3%	0.10	5.1%
250380	Galium aparine	0.1%	1.8%	50.0%	8.3%	0.10	5.1%
250380	Laportea canadensis	0.1%	1.8%	50.0%	8.3%	0.10	5.1%
250380	Taraxacum sp.	0.1%	1.8%	50.0%	8.3%	0.10	5.1%
250380	Solanum sp.	0.0%	0.9%	50.0%	8.3%	0.09	4.6%

		Average	Relative		Relative	Importance	Importance
Site Code	Plant Name	Coverage	Coverage	Frequency	Frequency	Value	Percentage
	Vines						
250407	Parthenocissus quinquefolia	5.8%	100.0%	33.3%	100.0%	2.00	100.0%
	Trees						
250407	Tilia americana L.	30.8%	70.6%	100.0%	30.0%	1.01	50.3%
250407	Fraxinus nigra Marsh.	9.2%	21.0%	100.0%	30.0%	0.51	25.5%
250407	Rhamnus cathartica L.	1.8%	4.2%	66.7%	20.0%	0.24	12.1%
250407	Carya ovata Koch.	1.7%	3.8%	33.3%	10.0%	0.14	6.9%
250407	Acer saccharum Marsh.	0.2%	0.4%	33.3%	10.0%	0.10	5.2%
	Shrubs						
250407	Ribes sp.	3.5%	51.2%	100.0%	60.0%	1.11	55.6%
250407	Lonicera sp.	3.3%	48.8%	66.7%	40.0%	0.89	44.4%
	Herbaceous						
250407	Impatiens capensis	26.0%	90.2%	100.0%	27.3%	1.17	58.7%
250407	Toxicodendron radicans	1.8%	6.4%	66.7%	18.2%	0.25	12.3%
250407	Asparagus L.	0.2%	0.6%	33.3%	9.1%	0.10	4.8%
250407	Carex sp.	0.2%	0.6%	33.3%	9.1%	0.10	4.8%
250407	Podophyllum peltatum	0.2%	0.6%	33.3%	9.1%	0.10	4.8%
250407	Polygonatum biflorum	0.2%	0.6%	33.3%	9.1%	0.10	4.8%
250407	Sanguinaria canadensis L.	0.2%	0.6%	33.3%	9.1%	0.10	4.8%
250407	Trillium sp.	0.2%	0.6%	33.3%	9.1%	0.10	4.8%

		Average	Relative		Relative	Importance	Importance
Site Code	Plant Name	Coverage	Coverage	Frequency	Frequency	Value	Percentage
	Vines						
250408	Vitis sp.	0.1%	100.0%	50.0%	100.0%	2.00	100.0%
	Trees						
250408	Acer saccharum Marsh.	72.5%	99.3%	100.0%	50.0%	1.49	74.7%
250408	Ulmus americana L.	0.5%	0.7%	100.0%	50.0%	0.51	25.3%
	Herbaceous						
250408	Impatiens capensis	6.3%	98.4%	100.0%	50.0%	1.48	74.2%
250408	Poaceae	0.1%	0.8%	50.0%	25.0%	0.26	12.9%
250408	Taraxacum sp.	0.1%	0.8%	50.0%	25.0%	0.26	12.9%

		Average	Relative		Relative	Importance	Importance
Site Code		Coverage	Coverage	Frequency	Frequency	Value	Percentage
	Vines						
250409	Vitis sp.	0.2%	100.0%	33.3%	100.0%	2.00	100.0%
	Trees						
250409	Acer negundo L.	18.3%	41.2%	66.7%	25.0%	0.66	33.1%
250409	Quercus macrocarpa Michx.	18.3%	41.2%	66.7%	25.0%	0.66	33.1%
250409	Ulmus sp.	7.5%	16.9%	66.7%	25.0%	0.42	20.9%
250409	Juglans nigra L.	0.2%	0.4%	33.3%	12.5%	0.13	6.4%
250409	Prunus serotina Ehrh.	0.2%	0.4%	33.3%	12.5%	0.13	6.4%
	Shrubs						
250409	Ribes sp.	6.0%	47.4%	66.7%	33.3%	0.81	40.4%
250409	Cornus sp.	3.3%	26.3%	66.7%	33.3%	0.60	29.8%
250409	Lonicera sp.	3.3%	26.3%	66.7%	33.3%	0.60	29.8%
	Herbaceous						
250409	Nasturtium nasturtium-aquaticum	36.7%	75.0%	100.0%	18.8%	0.94	46.9%
250409	Impatiens capensis	7.5%	15.3%	66.7%	12.5%	0.28	13.9%
250409	Poaceae	2.0%	4.1%	100.0%	18.8%	0.23	11.4%
250409	Solidago sp.	1.8%	3.7%	66.7%	12.5%	0.16	8.1%
250409	Pastinaca sativa L.	0.3%	0.7%	66.7%	12.5%	0.13	6.6%
250409	Phalaris arundinacea L.	0.3%	0.7%	66.7%	12.5%	0.13	6.6%
250409	Arctium L.	0.2%	0.3%	33.3%	6.3%	0.07	3.3%
250409	Polygonatum biflorum	0.1%	0.2%	33.3%	6.3%	0.06	3.2%

Site Code	e Plant Name	Average Coverage	Relative Coverage	Frequency	Relative Frequency	Importance Value	Importance Percentage
	Trees	_	_				_
680030	Salix sp.	1.0%	71.4%	33.3%	33.3%	1.05	52.4%
680030	Robinina pseudoacacia L.	0.4%	28.6%	66.7%	66.7%	0.95	47.6%
	Shrubs						
680030	Cornus racemosa	4.6%	100.0%	100.0%	100.0%	2.00	100.0%
	Herbaceous						
680030	Carex sp.	4.1%	16.1%	100.0%	13.6%	0.30	14.9%
680030	Juncus sp.	4.1%	16.1%	100.0%	13.6%	0.30	14.9%
680030	Scirpus sp.	4.1%	16.1%	100.0%	13.6%	0.30	14.9%
680030	Dalea candida	4.0%	15.7%	66.7%	9.1%	0.25	12.4%
680030	Solidago sp.	4.0%	15.7%	66.7%	9.1%	0.25	12.4%
680030	Silphium terebinthinaceum Jacq.	3.5%	13.8%	33.3%	4.5%	0.18	9.1%
680030	Typha L.	0.5%	2.0%	100.0%	13.6%	0.16	7.8%
680030	Coreopsis sp.	0.4%	1.6%	66.7%	9.1%	0.11	5.3%
680030	Monarda fistulosa L.	0.4%	1.6%	66.7%	9.1%	0.11	5.3%
680030	Caltha L.	0.4%	1.4%	33.3%	4.5%	0.06	3.0%

Site Code	Plant Name	Average Coverage	Relative Coverage	Frequency	Relative Frequency	Importance Value	Importance Percentage
	Trees						
680039	Ulmus sp.	12.8%	29.4%	100.0%	30.8%	0.60	30.1%
680039	Quercus sp.	10.9%	25.0%	50.0%	15.4%	0.40	20.2%
680039	Prunus sp.	6.0%	13.6%	75.0%	23.1%	0.37	18.4%
680039	Salix sp.	5.7%	13.1%	50.0%	15.4%	0.28	14.2%
680039	Rhamnus sp.	5.6%	12.9%	25.0%	7.7%	0.21	10.3%
680039	Tilia americana L.	2.6%	6.0%	25.0%	7.7%	0.14	6.9%
	Shrubs						
680039	Cornus sp.	25.9%	100.0%	75.0%	100.0%	2.00	100.0%
	Herbaceous						
680039	Impatiens capensis	37.9%	30.4%	100.0%	17.4%	0.48	23.9%
680039	Caltha L.	25.9%	20.8%	100.0%	17.4%	0.38	19.1%
680039	Carex sp.	12.2%	9.8%	75.0%	13.0%	0.23	11.4%
680039	Nasturtium nasturtium-aquaticum	17.0%	13.6%	50.0%	8.7%	0.22	11.2%
680039	Juncus sp.	12.1%	9.7%	50.0%	8.7%	0.18	9.2%
680039	Phalaris arundinacea L.	12.1%	9.7%	50.0%	8.7%	0.18	9.2%
680039	Eupatoriadelphus sp.	4.0%	3.2%	75.0%	13.0%	0.16	8.1%
680039	Scirpus sp.	3.3%	2.7%	50.0%	8.7%	0.11	5.7%
680039	Poaceae	0.1%	0.1%	25.0%	4.3%	0.04	2.2%

		Average	Relative		Relative	Importance	Importance
Site Code	Plant Name	Coverage	Coverage	Frequency	Frequency	Value	Percentage
	Trees						
680049	Rhamnus sp.	78.1%	100.0%	100.0%	100.0%	2.00	100.0%
	Herbaceous						
680049	Phalaris arundinacea L.	13.3%	32.2%	100.0%	15.8%	0.48	24.0%
680049	Impatiens capensis	12.4%	30.0%	100.0%	15.8%	0.46	22.9%
680049	Poaceae	3.7%	8.8%	100.0%	15.8%	0.25	12.3%
680049	Solidago sp.	3.7%	8.8%	100.0%	15.8%	0.25	12.3%
680049	Nasturtium nasturtium-aquaticum	4.0%	9.7%	66.7%	10.5%	0.20	10.1%
680049	Cirsium sp.	0.5%	1.2%	100.0%	15.8%	0.17	8.5%
680049	Carex sp.	3.5%	8.5%	33.3%	5.3%	0.14	6.9%
680049	Equisetum sp.	0.4%	0.8%	33.3%	5.3%	0.06	3.1%

Site Code	e Plant Name	Average Coverage	Relative Coverage	Frequency	Relative Frequency	Importance Value	Importance Percentage
	Trees		g -				g-
680054	Salix sp.	5.0%	60.6%	100.0%	75.0%	1.36	67.8%
680054	Rhamnus sp.	3.3%	39.4%	33.3%	25.0%	0.64	32.2%
	Shrubs						
680054	Rosa sp.	0.3%	100.0%	33.3%	100.0%	2.00	100.0%
	Herbaceous						
680054	Aster sp.	13.3%	13.4%	100.0%	9.7%	0.23	11.5%
680054	Eupatoriadelphus sp.	11.6%	11.7%	100.0%	9.7%	0.21	10.7%
680054	Impatiens capensis	13.1%	13.2%	66.7%	6.5%	0.20	9.8%
680054	Carex sp.	11.9%	12.0%	66.7%	6.5%	0.18	9.2%
680054	Eupatorium perfoliatum	11.4%	11.5%	66.7%	6.5%	0.18	9.0%
680054	Nasturtium nasturtium-aquaticum	9.8%	9.8%	33.3%	3.2%	0.13	6.5%
680054	Equisetum sp.	3.8%	3.8%	66.7%	6.5%	0.10	5.1%
680054	Juncus sp.	3.8%	3.8%	66.7%	6.5%	0.10	5.1%
680054	Solidago sp.	3.8%	3.8%	66.7%	6.5%	0.10	5.1%
680054	Angelica atropurpurea L.	3.3%	3.3%	66.7%	6.5%	0.10	4.9%
680054	Phalaris arundinacea L.	3.3%	3.3%	66.7%	6.5%	0.10	4.9%
680054	Poaceae	3.3%	3.3%	66.7%	6.5%	0.10	4.9%
680054	Symplocarpus sp.	3.3%	3.3%	66.7%	6.5%	0.10	4.9%
680054	Scirpus sp.	0.4%	0.4%	66.7%	6.5%	0.07	3.4%
680054	Verbena hastata L.	3.3%	3.3%	33.3%	3.2%	0.07	3.3%
680054	Allium schoenoprasum L.	0.1%	0.1%	33.3%	3.2%	0.03	1.6%

Site Code	Plant Name	Average Coverage	Relative Coverage	Fraguency	Relative Frequency	Importance Value	Importance Percentage
Site Code	Trees	Coverage	Coverage	Frequency	Frequency	v arue	1 el centage
680056	Rhamnus sp.	27.8%	51.2%	100.0%	50.0%	1.01	50.6%
680056	Salix sp.	26.4%	48.8%	100.0%	50.0%	0.99	49.4%
	Herbaceous						
680056	Phalaris arundinacea L.	56.0%	40.8%	100.0%	7.7%	0.49	24.3%
680056	Poaceae	27.8%	20.2%	100.0%	7.7%	0.28	14.0%
680056	Nasturtium nasturtium-aquaticum	25.3%	18.4%	100.0%	7.7%	0.26	13.0%
680056	Carex sp.	5.0%	3.6%	100.0%	7.7%	0.11	5.7%
680056	Juncus sp.	5.0%	3.6%	100.0%	7.7%	0.11	5.7%
680056	Eupatorium perfoliatum	3.7%	2.7%	100.0%	7.7%	0.10	5.2%
680056	Lemna sp.	1.9%	1.3%	100.0%	7.7%	0.09	4.5%
680056	Angelica atropurpurea L.	0.5%	0.4%	100.0%	7.7%	0.08	4.0%
680056	Eupatoriadelphus sp.	0.5%	0.4%	100.0%	7.7%	0.08	4.0%
680056	Impatiens capensis	0.5%	0.4%	100.0%	7.7%	0.08	4.0%
680056	Pastinaca sativa L.	0.5%	0.4%	100.0%	7.7%	0.08	4.0%
680056	Potentilla sp.	3.5%	2.6%	50.0%	3.8%	0.06	3.2%
680056	Solidago sp.	3.5%	2.6%	50.0%	3.8%	0.06	3.2%
680056	Symplocarpus sp.	3.5%	2.6%	50.0%	3.8%	0.06	3.2%
680056	Verbena L.	0.2%	0.1%	50.0%	3.8%	0.04	2.0%

Site Code	Dlant Nama	Average	Relative	E	Relative	Importance	Importance
Site Code	Plant Name Trees	Coverage	Coverage	Frequency	Frequency	Value	Percentage
680063	Rhamnus sp.	15.0%	74.9%	100.0%	50.0%	1.25	62.5%
680063	Salix sp.	5.0%	25.1%	100.0%	50.0%	0.75	37.5%
	Shrubs						
680063	Cornus racemosa	15.0%	63.8%	100.0%	50.0%	1.14	56.9%
680063	Ribes sp.	4.3%	18.1%	50.0%	25.0%	0.43	21.6%
680063	Rosa sp.	4.3%	18.1%	50.0%	25.0%	0.43	21.6%
	Herbaceous						
680063	Solidago sp.	62.4%	27.7%	100.0%	7.4%	0.35	17.6%
680063	Impatiens capensis	32.6%	14.5%	100.0%	7.4%	0.22	11.0%
680063	Eupatoriadelphus sp.	32.0%	14.2%	100.0%	7.4%	0.22	10.8%
680063	Juncus sp.	15.6%	6.9%	100.0%	7.4%	0.14	7.2%
680063	Cirsium arvense L.	15.0%	6.6%	100.0%	7.4%	0.14	7.0%
680063	Lythrum salicaria	15.0%	6.6%	100.0%	7.4%	0.14	7.0%
680063	Mentha arvensis L.	15.0%	6.6%	100.0%	7.4%	0.14	7.0%
680063	Phalaris arundinacea L.	15.0%	6.6%	100.0%	7.4%	0.14	7.0%
680063	Carex sp.	5.0%	2.2%	100.0%	7.4%	0.10	4.8%
680063	Cirsium muticum	4.3%	1.9%	100.0%	7.4%	0.09	4.7%
680063	Scirpus sp.	4.3%	1.9%	100.0%	7.4%	0.09	4.7%
680063	Symplocarpus sp.	4.3%	1.9%	100.0%	7.4%	0.09	4.7%
680063	Angelica atropurpurea L.	4.3%	1.9%	50.0%	3.7%	0.06	2.8%
680063	Mimulus sp.	0.4%	0.2%	50.0%	3.7%	0.04	1.9%
680063	Typha L.	0.0%	0.0%	50.0%	3.7%	0.04	1.9%

		Average	Relative		Relative	Importance	Importance
Site Code	e Plant Name	Coverage	Coverage	Frequency	Frequency	Value	Percentage
	Trees						
680080	Rhamnus sp.	16.6%	47.7%	66.7%	33.3%	0.81	40.5%
680080	Acer sacchariunum	13.5%	38.7%	66.7%	33.3%	0.72	36.0%
680080	Salix nigra Marsh.	4.8%	13.6%	66.7%	33.3%	0.47	23.5%
	Shrubs						
680080	Rosa sp.	3.5%	100.0%	33.3%	100.0%	2.00	100.0%
	Herbaceous						
680080	Impatiens capensis	72.6%	74.7%	66.7%	50.0%	1.25	62.4%
680080	Nasturtium nasturtium-aquaticum	24.4%	25.1%	33.3%	25.0%	0.50	25.0%
680080	Equisetum sp.	0.2%	0.2%	33.3%	25.0%	0.25	12.6%

		A	D-1-45		D-1-45	T	T
Site Code	e Plant Name	Average Coverage	Relative Coverage	Frequency	Relative Frequency	Importance Value	Importance Percentage
Site Coue	Vines	coverage	coverage	Trequency	requency	value	1 cr centage
680083	Vitis sp.	4.8%	100.0%	100.0%	100.0%	2.00	100.0%
	Trees						
680083	Rhamnus sp.	22.9%	40.1%	100.0%	23.1%	0.63	31.6%
680083	Fraxinus pennsylvanica Marsh.	11.7%	20.4%	100.0%	23.1%	0.43	21.7%
680083	Populus grandidentata	11.7%	20.4%	100.0%	23.1%	0.43	21.7%
680083	Acer negundo L.	10.7%	18.7%	100.0%	23.1%	0.42	20.9%
680083	Thuja occidentalis	0.2%	0.4%	33.3%	7.7%	0.08	4.0%
	Shrubs						
680083	Viburnum sp.	4.8%	100.0%	100.0%	100.0%	2.00	100.0%
	Herbaceous						
680083	Juncus sp.	16.6%	28.9%	66.7%	12.5%	0.41	20.7%
680083	Liliaceae sp.	11.6%	20.2%	66.7%	12.5%	0.33	16.4%
680083	Solidago sp.	11.6%	20.2%	66.7%	12.5%	0.33	16.4%
680083	Aster sp.	4.8%	8.3%	66.7%	12.5%	0.21	10.4%
680083	Iris sp.	4.8%	8.3%	66.7%	12.5%	0.21	10.4%
680083	Poaceae	4.8%	8.3%	66.7%	12.5%	0.21	10.4%
680083	Eupatoriadelphus sp.	0.5%	0.8%	66.7%	12.5%	0.13	6.7%
680083	Symplocarpus sp.	2.8%	4.8%	33.3%	6.3%	0.11	5.5%
680083	Lythrum salicaria	0.1%	0.2%	33.3%	6.3%	0.06	3.2%

Site Code	e Plant Name Trees	Average Coverage	Relative Coverage	Frequency	Relative Frequency	Importance Value	Importance Percentage
680128	Rhamnus sp.	17.5%	75.3%	100.0%	25.0%	1.00	50.1%
680128	Salix sp.	5.0%	21.5%	100.0%	25.0%	0.47	23.3%
680128	Betula sp.	0.5%	2.2%	100.0%	25.0%	0.27	13.6%
680128	Rhus sp.	0.3%	1.1%	100.0%	25.0%	0.26	13.0%
	Shrubs						
680128	Ulex sp.	0.5%	100.0%	100.0%	100.0%	2.00	100.0%
	Herbaceous						
680128	Equisetum sp.	5.0%	46.5%	100.0%	25.0%	0.72	35.8%
680128	Plantago major L.	5.0%	46.5%	100.0%	25.0%	0.72	35.8%
680128	Poaceae	0.5%	4.7%	100.0%	25.0%	0.30	14.8%
680128	Solidago sp.	0.3%	2.3%	100.0%	25.0%	0.27	13.7%

		Average	Relative		Relative	Importance	Importance
Site Code	e Plant Name	Coverage	Coverage	Frequency	Frequency	Value	Percentage
	Trees						
680137	Acer negundo L.	5.2%	91.6%	100.0%	60.0%	1.52	75.8%
680137	Salix sp.	0.5%	8.4%	66.7%	40.0%	0.48	24.2%
	Shrubs						
680137	Rosa sp.	0.03%	100.0%	33.3%	100.0%	2.00	100.0%
	Herbaceous						
680137	Phalaris arundinacea L.	97.5%	70.0%	100.0%	21.4%	0.91	45.7%
680137	Nasturtium nasturtium-aquaticum	35.9%	25.7%	100.0%	21.4%	0.47	23.6%
680137	Impatiens capensis	5.0%	3.6%	100.0%	21.4%	0.25	12.5%
680137	Urtica L.	0.5%	0.4%	100.0%	21.4%	0.22	10.9%
680137	Cirsium arvense L.	0.5%	0.3%	66.7%	14.3%	0.15	7.3%

Site Code	e Plant Name	Average Coverage	Relative Coverage	Frequency	Relative Frequency	Importance Value	Importance Percentage
	Trees						
680146	Rhamnus sp.	32.0%	93.3%	100.0%	50.0%	1.43	71.6%
680146	Alnus sp.	2.3%	6.7%	100.0%	50.0%	0.57	28.4%
	Herbaceous						
680146	Potentilla sp.	15.3%	26.6%	100.0%	10.5%	0.37	18.6%
680146	Carex sp.	15.0%	26.1%	50.0%	5.3%	0.31	15.7%
680146	Phalaris arundinacea L.	10.0%	17.4%	100.0%	10.5%	0.28	14.0%
680146	Poaceae	7.3%	12.7%	100.0%	10.5%	0.23	11.6%
680146	Cirsium arvense L.	2.3%	4.0%	100.0%	10.5%	0.15	7.3%
680146	Impatiens capensis	2.0%	3.5%	50.0%	5.3%	0.09	4.4%
680146	Juncus sp.	2.0%	3.5%	50.0%	5.3%	0.09	4.4%
680146	Mentha arvensis L.	2.0%	3.5%	50.0%	5.3%	0.09	4.4%
680146	Iris sp.	0.3%	0.5%	50.0%	5.3%	0.06	2.9%
680146	Nasturtium sp.	0.3%	0.5%	50.0%	5.3%	0.06	2.9%
680146	Sagittaria sp.	0.3%	0.5%	50.0%	5.3%	0.06	2.9%
680146	Symplocarpus sp.	0.3%	0.5%	50.0%	5.3%	0.06	2.9%
680146	Eupatoriadelphus sp.	0.2%	0.3%	50.0%	5.3%	0.06	2.8%
680146	Mimulus ringens L.	0.1%	0.2%	50.0%	5.3%	0.05	2.7%
680146	Ranunculus sp.	0.1%	0.2%	50.0%	5.3%	0.05	2.7%

		A viono go	Relative		Relative	Importance	Importance
Site Code	e Plant Name	Average Coverage	Coverage	Frequency	Frequency	Importance Value	Importance Percentage
one coue	Trees	Coverage	Coverage	Frequency	rrequency	varue	rereemage
680149	Rhamnus sp.	48.3%	67.4%	100.0%	33.3%	1.01	50.4%
680149	Fraxinus sp.	20.8%	29.1%	100.0%	33.3%	0.62	31.2%
680149	Alnus sp.	2.3%	3.1%	66.7%	22.2%	0.25	12.7%
680149	Quercus sp.	0.3%	0.3%	33.3%	11.1%	0.11	5.7%
	Shrubs						
680149	Cornus sp.	0.5%	52.6%	100.0%	60.0%	1.13	56.3%
680149	Ribes sp.	0.5%	47.4%	66.7%	40.0%	0.87	43.7%
	Herbaceous						
680149	Poaceae	35.5%	40.4%	100.0%	9.1%	0.50	24.8%
680149	Symplocarpus sp.	10.8%	12.2%	66.7%	6.1%	0.18	9.2%
680149	Phalaris arundinacea L.	7.5%	8.5%	66.7%	6.1%	0.15	7.3%
680149	Carex sp.	4.6%	5.2%	100.0%	9.1%	0.14	7.1%
680149	Laportea canadensis	4.6%	5.2%	100.0%	9.1%	0.14	7.1%
680149	Scirpus sp.	2.3%	2.6%	100.0%	9.1%	0.12	5.9%
680149	Aster sp.	4.5%	5.1%	66.7%	6.1%	0.11	5.6%
680149	Equisetum sp.	2.7%	3.1%	66.7%	6.1%	0.09	4.6%
680149	Eupatoriadelphus sp.	2.3%	2.6%	66.7%	6.1%	0.09	4.3%
680149	Eupatorium perfoliatum	2.3%	2.6%	66.7%	6.1%	0.09	4.3%
680149	Geranium L.	2.3%	2.6%	66.7%	6.1%	0.09	4.3%
680149	Impatiens capensis	2.3%	2.6%	66.7%	6.1%	0.09	4.3%
680149	Verbena L.	2.3%	2.6%	66.7%	6.1%	0.09	4.3%
680149	Angelica atropurpurea L.	2.0%	2.3%	33.3%	3.0%	0.05	2.7%
680149	Solidago sp.	2.0%	2.3%	33.3%	3.0%	0.05	2.7%
680149	Mentha arvensis L.	0.2%	0.2%	33.3%	3.0%	0.03	1.6%

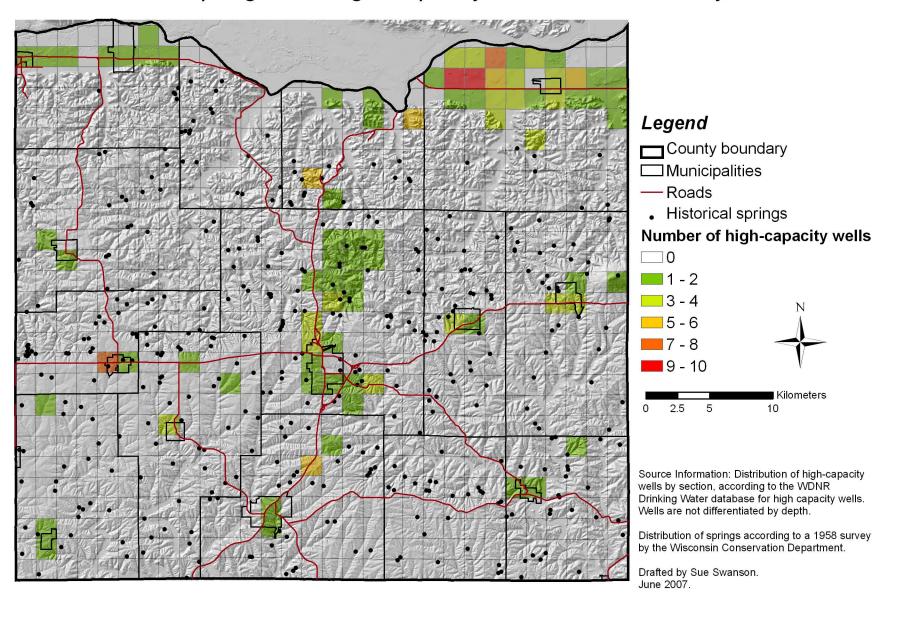
		Average	Relative		Relative	Importance	Importance
Site Code	e Plant Name	Coverage	Coverage	Frequency	Frequency	Value	Percentage
	Trees						
680150	Rhamnus sp.	32.6%	90.9%	100.0%	80.0%	1.71	85.5%
680150	Salix sp.	3.3%	9.1%	25.0%	20.0%	0.29	14.5%
	Herbaceous						
680150	Solidago sp.	15.0%	16.9%	100.0%	10.5%	0.27	13.7%
680150	Scirpus sp.	14.9%	16.9%	75.0%	7.9%	0.25	12.4%
680150	Cirsium arvense L.	12.5%	14.1%	100.0%	10.5%	0.25	12.3%
680150	Nasturtium nasturtium-aquaticum	14.7%	16.6%	75.0%	7.9%	0.25	12.3%
680150	Phalaris arundinacea L.	4.8%	5.4%	100.0%	10.5%	0.16	8.0%
680150	Symplocarpus sp.	6.8%	7.7%	75.0%	7.9%	0.16	7.8%
680150	Equisetum sp.	4.3%	4.9%	75.0%	7.9%	0.13	6.4%
680150	Eupatorium perfoliatum	3.4%	3.8%	75.0%	7.9%	0.12	5.9%
680150	Caltha L.	1.0%	1.1%	100.0%	10.5%	0.12	5.8%
680150	Potentilla sp.	4.3%	4.8%	50.0%	5.3%	0.10	5.0%
680150	Cirsium muticum	3.3%	3.7%	25.0%	2.6%	0.06	3.2%
680150	Eupatoriadelphus sp.	3.3%	3.7%	25.0%	2.6%	0.06	3.2%
680150	Mentha arvensis L.	0.4%	0.5%	50.0%	5.3%	0.06	2.9%
680150	Juncus sp.	0.1%	0.1%	25.0%	2.6%	0.03	1.3%

Site Code	e Plant Name	Average Coverage	Relative Coverage	Frequency	Relative Frequency	Importance Value	Importance Percentage
	Trees						
680172	Tilia americana L.	90.1%	75.3%	75.0%	18.8%	0.94	47.0%
680172	Rhamnus sp.	10.8%	9.0%	100.0%	25.0%	0.34	17.0%
680172	Prunus sp.	7.9%	6.6%	75.0%	18.8%	0.25	12.7%
680172	Ulmus rubra Muhl.	3.8%	3.2%	50.0%	12.5%	0.16	7.8%
680172	Fraxinus sp.	3.8%	3.1%	50.0%	12.5%	0.16	7.8%
680172	Juglans nigra L.	3.3%	2.8%	50.0%	12.5%	0.15	7.6%
	Shrubs						
680172	Rosa sp.	15.4%	45.0%	100.0%	36.4%	0.81	40.7%
680172	Lonicera sp.	15.0%	43.7%	100.0%	36.4%	0.80	40.0%
680172	Ribes sp.	3.9%	11.3%	75.0%	27.3%	0.39	19.3%
	Herbaceous						
680172	Impatiens capensis	47.8%	77.9%	100.0%	28.6%	1.06	53.2%
680172	Juncus sp.	4.3%	7.0%	75.0%	21.4%	0.28	14.2%
680172	Urtica L.	3.4%	5.5%	75.0%	21.4%	0.27	13.5%
680172	Podophyllum peltatum	3.5%	5.7%	25.0%	7.1%	0.13	6.4%
680172	Arisaema sp.	1.0%	1.6%	25.0%	7.1%	0.09	4.4%
680172	Parthenocissus quinquefolia	1.0%	1.6%	25.0%	7.1%	0.09	4.4%
680172	Mimulus sp.	0.3%	0.5%	25.0%	7.1%	0.08	3.8%
	-						

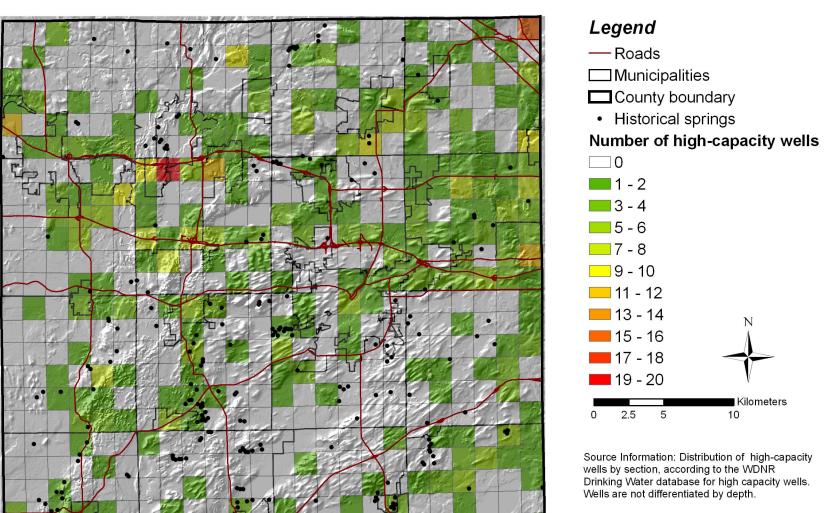
		Average	Relative		Relative	Importance	Importance
Site Code	Plant Name	Coverage	Coverage	Frequency	Frequency	Value	Percentage
	Vines	, and the second	0	1 0			0
680197	Vitis sp.	0.4%	100.0%	100.0%	100.0%	2.00	100.0%
	Trees						
680197	Rhamnus sp.	14.0%	97.2%	50.0%	50.0%	1.47	73.6%
680197	Ulmus americana L.	0.4%	2.8%	50.0%	50.0%	0.53	26.4%
	Herbaceous						
680197	Impatiens capensis	31.0%	17.4%	100.0%	8.0%	0.25	12.7%
680197	Carex sp.	30.1%	16.9%	100.0%	8.0%	0.25	12.4%
680197	Solidago sp.	30.1%	16.9%	100.0%	8.0%	0.25	12.4%
680197	Juncus sp.	14.1%	7.9%	100.0%	8.0%	0.16	8.0%
680197	Poaceae	14.1%	7.9%	100.0%	8.0%	0.16	8.0%
680197	Nasturtium nasturtium-aquaticum	19.5%	10.9%	50.0%	4.0%	0.15	7.5%
680197	Aster sp.	14.0%	7.9%	50.0%	4.0%	0.12	5.9%
680197	Angelica atropurpurea L.	4.1%	2.3%	100.0%	8.0%	0.10	5.2%
680197	Cirsium muticum	4.1%	2.3%	100.0%	8.0%	0.10	5.2%
680197	Phalaris arundinacea L.	4.1%	2.3%	100.0%	8.0%	0.10	5.2%
680197	Typha L.	4.1%	2.3%	100.0%	8.0%	0.10	5.2%
680197	Verbena L.	4.1%	2.3%	100.0%	8.0%	0.10	5.2%
680197	Eupatoriadelphus sp.	4.0%	2.2%	50.0%	4.0%	0.06	3.1%
680197	Panicum virgatum	0.4%	0.2%	50.0%	4.0%	0.04	2.1%
680197	Toxicodendron radicans	0.4%	0.2%	50.0%	4.0%	0.04	2.1%

Site Code	Plant Name Trees	Average Coverage	Relative Coverage	Frequency	Relative Frequency	Importance Value	Importance Percentage
680201	Quercus macrocarpa Michx.	12.4%	59.8%	100.0%	27.3%	0.87	43.5%
680201	Rhamnus sp.	4.0%	19.3%	66.7%	18.2%	0.37	18.7%
680201	Salix babylonica L.	4.0%	19.3%	66.7%	18.2%	0.37	18.7%
680201	Larix laricina Koch	0.2%	0.7%	66.7%	18.2%	0.19	9.5%
680201	Acer sacchariunum	0.1%	0.5%	33.3%	9.1%	0.10	4.8%
680201	Pinus strobus L.	0.1%	0.5%	33.3%	9.1%	0.10	4.8%
	Herbaceous						
680201	Nasturtium nasturtium-aquaticum	20.0%	73.9%	66.7%	20.0%	0.94	47.0%
680201	Impatiens capensis	3.6%	13.1%	66.7%	20.0%	0.33	16.6%
680201	Poaceae	1.4%	5.0%	66.7%	20.0%	0.25	12.5%
680201	Arctium L.	0.2%	0.6%	66.7%	20.0%	0.21	10.3%
680201	Cirsium arvense L.	1.0%	3.7%	33.3%	10.0%	0.14	6.8%
680201	Eupatoriadelphus sp.	1.0%	3.7%	33.3%	10.0%	0.14	6.8%

Site Code	e Plant Name	Average Coverage	Relative Coverage	Frequency	Relative Frequency	Importance Value	Importance Percentage
	Trees						
680212	Quercus alba L.	18.0%	53.4%	100.0%	37.5%	0.91	45.5%
680212	Carya ovata Koch.	15.3%	45.4%	100.0%	37.5%	0.83	41.5%
680212	Alnus sp.	0.2%	0.6%	33.3%	12.5%	0.13	6.5%
680212	Robinina pseudoacacia L.	0.2%	0.6%	33.3%	12.5%	0.13	6.5%
	Shrubs						
680212	Ribes sp.	15.0%	100.0%	33.3%	100.0%	2.00	100.0%
	Herbaceous						
680212	Alliaria petiola	29.0%	71.4%	33.3%	5.9%	0.77	38.7%
680212	Symplocarpus sp.	1.4%	3.4%	100.0%	17.6%	0.21	10.5%
680212	Impatiens capensis	1.2%	3.0%	66.7%	11.8%	0.15	7.4%
680212	Caltha L.	0.3%	0.7%	66.7%	11.8%	0.13	6.3%
680212	Nasturtium nasturtium-aquaticum	0.3%	0.7%	66.7%	11.8%	0.13	6.3%
680212	Polygonatum biflorum	0.2%	0.5%	66.7%	11.8%	0.12	6.1%
680212	Erigeron sp.	2.0%	4.9%	33.3%	5.9%	0.11	5.4%
680212	Galium sp.	2.0%	4.9%	33.3%	5.9%	0.11	5.4%
680212	Geranium L.	2.0%	4.9%	33.3%	5.9%	0.11	5.4%
680212	Poaceae	2.0%	4.9%	33.3%	5.9%	0.11	5.4%
680212	Aquilegia sp.	0.2%	0.5%	33.3%	5.9%	0.06	3.2%


Site Code		Average Coverage	Relative Coverage	Frequency	Relative Frequency	Importance Value	Importance Percentage
680300	Vines Vitis sp. Trees	0.3%	100.0%	33.3%	100.0%	2.00	100.0%
680300 680300	Rhamnus sp. Prunus pennsylvanica L. fils Shrubs	46.8% 10.7%	81.4% 18.6%	100.0% 66.7%	60.0% 40.0%	1.41 0.59	70.7% 29.3%
680300	Ribes sp. Herbaceous	10.7%	100.0%	66.7%	100.0%	2.00	100.0%
680300 680300	Symplocarpus sp. Impatiens capensis	43.7% 12.5%	50.9% 14.6%	100.0% 100.0%	15.8% 15.8%	0.67 0.30	33.3% 15.2%
680300 680300	Nasturtium nasturtium-aquaticum Poaceae	15.0% 6.1%	17.5% 7.0%	66.7% 100.0%	10.5% 15.8%	0.28 0.23	14.0% 11.4%
680300 680300	Caltha L. Solidago sp.	4.6% 3.2%	5.3% 3.7%	100.0% 66.7%	15.8% 10.5%	0.21 0.14	10.5% 7.1%
680300 680300	Equisetum sp. Liliaceae sp.	0.3% 0.3%	0.3%	33.3% 33.3%	5.3% 5.3%	0.06 0.06	2.8% 2.8%
680300	Parthenocissus quinquefolia	0.3%	0.3%	33.3%	5.3%	0.06	2.8%

		Average	Relative		Relative	Importance	Importance
Site Code	e Plant Name	Coverage	Coverage	Frequency	Frequency	Value	Percentage
	Trees						
680301	Rhamnus sp.	15.1%	92.8%	100.0%	50.0%	1.43	71.4%
680301	Salix sp.	1.2%	7.2%	100.0%	50.0%	0.57	28.6%
	Herbaceous						
680301	Juncus sp.	6.9%	66.7%	100.0%	18.2%	0.85	42.5%
680301	Equisetum sp.	1.2%	11.4%	100.0%	18.2%	0.30	14.8%
680301	Phalaris arundinacea L.	1.2%	11.4%	100.0%	18.2%	0.30	14.8%
680301	Carex sp.	0.5%	4.9%	100.0%	18.2%	0.23	11.5%
680301	Pteridophyta	0.5%	4.9%	100.0%	18.2%	0.23	11.5%
680301	Rudbeckia hirta	0.1%	0.7%	50.0%	9.1%	0.10	4.9%


		Average	Relative		Relative	Importance	Importance
Site Code	Plant Name	Coverage	Coverage	Frequency	Frequency	Value	Percentage
	Vines						
680302	Vitis sp.	1.0%	100.0%	25.0%	100.0%	2.00	100.0%
	Trees						
680302	Rhamnus sp.	16.7%	31.5%	100.0%	20.0%	0.52	25.8%
680302	Quercus macrocarpa Michx.	16.6%	31.3%	75.0%	15.0%	0.46	23.2%
680302	Salix nigra Marsh.	8.2%	15.5%	100.0%	20.0%	0.35	17.7%
680302	Populus deltoides Bartr.	5.7%	10.8%	100.0%	20.0%	0.31	15.4%
680302	Salix sp.	2.1%	4.0%	75.0%	15.0%	0.19	9.5%
680302	Carya ovata Koch.	3.7%	7.0%	50.0%	10.0%	0.17	8.5%
	Shrubs						
680302	Ribes sp.	1.0%	100.0%	25.0%	100.0%	2.00	100.0%
	Herbaceous						
680302	Typha L.	15.7%	33.4%	75.0%	10.7%	0.44	22.1%
680302	Poaceae	10.6%	22.6%	100.0%	14.3%	0.37	18.4%
680302	Juncus sp.	4.8%	10.2%	100.0%	14.3%	0.24	12.2%
680302	Impatiens capensis	4.6%	9.8%	75.0%	10.7%	0.21	10.3%
680302	Phalaris arundinacea L.	3.8%	8.1%	75.0%	10.7%	0.19	9.4%
680302	Eupatoriadelphus sp.	2.2%	4.7%	75.0%	10.7%	0.15	7.7%
680302	Solidago sp.	1.2%	2.6%	75.0%	10.7%	0.13	6.6%
680302	Carex sp.	2.0%	4.3%	50.0%	7.1%	0.11	5.7%
680302	Cirsium arvense L.	1.0%	2.1%	25.0%	3.6%	0.06	2.8%
680302	Scirpus sp.	1.0%	2.1%	25.0%	3.6%	0.06	2.8%
680302	Urtica L.	0.1%	0.2%	25.0%	3.6%	0.04	1.9%

APPENDIX F: Distribution of Spring	s and High-Capacity Wel	lls in Iowa and Waukesha C	ounties

Distribution of Springs and High-Capacity Wells in Iowa County, Wisconsin

Distribution of Springs and High-Capacity Wells in Waukesha County, Wisconsin

Distribution of springs according to a 1958 survey by the Wisconsin Conservation Department.

Drafted by Sue Swanson. June 2007.

APPENDIX G: Acknowledgements

This work was supported by the UW-Water Resources Institute, the USGS, and the WDNR. We thank the many property owners who assisted in this effort by sharing information and allowing access to their springs. We also thank Paul Ohlrogge (UW-Extension) and the many other county and state personnel who contributed background information. Sincere thanks to Dr. Yaffa Grossman (Beloit College), who provided assistance with interpretation of ecological data. Brandon Bartkowiak, Becky Carvin, Natalie Hunt, and David Zaber also provided valuable assistance in the field.