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PROJECT SUMMARY  
 
Title:  Groundwater nitrate processing in deep stream sediments 
Project I.D. WR10R005 
Investigators:   Principal Investigator- Dr. Robert S. Stelzer, Associate Professor, Department  
   of Biology and Microbiology, University of Wisconsin Oshkosh, Oshkosh, WI 
  Co-Principal Investigator-Mr. Lynn Bartsch, Research Fishery Biologist 
  United States Geological Survey, Upper Midwest Environmental Sciences Center  
  La Crosse, WI 54603 
 
Period of Contract: 7/1/2010 - 6/30/2011 
 
Background/need:  Elevated nitrate concentration in ground water is a pressing environmental 
problem in many regions of the world, including Wisconsin (Browne et al. 2008, Rupert 2008, 
Saad 2008).  The nitrate concentration of ground water in many areas of the Central Sand Ridges 
Ecoregion of Wisconsin exceeds the recommended limit for drinking water (10 mg NO3-N L-1) 
set by the Environmental Protection Agency.   Current federal policy mandating the use of 
biofuels (e.g. ethanol produced from corn) and world demands for food may lead to further 
increases in nitrate concentrations and loads in groundwater.  Identification of hot spots of 
nitrogen processing will improve the ability of scientists to predict nitrogen retention and loss 
from watersheds and will aid land and water managers who need to make decisions that balance 
nitrogen removal with needs of other stakeholders.  The proposed project addresses the following 
priorities of the University of Wisconsin System: Interactions of groundwater and surface water 
including chemical transformations in the hyporheic zone. 
 
Objectives:  The main objectives of the proposed project were: 1) To determine if nitrogen 
processing in groundwater associated with deep stream sediments is widespread throughout a 
river network, 2) To determine if high nitrate concentration in groundwater saturates 
denitrification in stream sediments.  
 
Methods: We identified eight study sites on streams and rivers in the Waupaca River Network in 
Central Wisconsin.  Sites were chosen that spanned a large range in groundwater nitrate 
concentration (<0.01  to 9 mg NO3-N/L on average), were located in upwelling reaches, and had 
fine sediments present.   We measured denitrification on sections at 5 cm intervals from four to 
five sediment cores (to a depth of 20 to 30 cm) collected from each stream to determine how 
denitrification rates vary by depth, among cores, and among streams.  The organic matter content 
of the sediment cores, as well as the nutrient and dissolved oxygen concentrations of the 
groundwater used in the denitrification incubations, will be used to develop regression models 
for predicting denitrification rates in stream sediments.   Three peeper samplers and piezometer 
nests were deployed in each stream to determine fine-scale vertical profiles of nitrate and 
chloride concentration in the groundwater to a sediment depth of 90 cm.   Our combined 
approach (denitrification measurements and nitrate profiles) has resulted in some of the most 
high-resolution estimates of groundwater nitrate processing in stream sediments. 
 



  2 

Results and Discussion: Mean denitrification rates were higher in shallow sediments than deeper 
sediments.  However, core sections deeper than 5 cm accounted for about 70%, on average, of 
the total denitrification (integrated throughout the entire core).   The magnitude of denitrification 
rate differed strongly among sites.  At many sites denitrification rates were higher in shallower 
sediments, while other locations showed similar denitrification rates at various sediment depths 
or higher denitrification rate in deeper sections. Denitrification rate increased linearly with 
groundwater nitrate concentration at low concentrations (<  2 mg NO3-N/L) but denitrification 
varied considerably at high groundwater nitrate concentrations (> 5 mg NO3-N/L), a pattern that 
suggests nitrate saturation.    
 
For most of the study sites nitrate concentration was higher in deep groundwater than in 
shallower groundwater.  At most sites including the Tomorrow River Site I, Bear Cr., Emmons 
Cr. and the Crystal River nitrate concentration tended to decline to very low concentrations  as 
groundwater moved from deeper to shallower sediments, while chloride concentration changed 
much less.  Two piezometer nest locations showed that groundwater nitrate remained high as 
water moved from deeper to shallower sediments. At two nest locations at Tomorrow River Site 
II chloride and nitrate concentrations were both higher in the deep groundwater than in the 
shallow groundwater.  Finally, all piezometer nest locations at Hartman Cr. and the Waupaca R. 
revealed nitrate concentrations at or below the detection limit for both deep and shallow 
groundwater.   The ratio of NO3-N:Cl- was lower in shallow groundwater than in deep 
groundwater at 14 of 18 of the locations in which the nitrate concentration in the deep 
groundwater was above the detection limit.  This result suggests that nitrate was removed in most 
cases as groundwater upwelled from deep to shallower sediments. 
 
Conclusions/Implications/Recommendations:  The denitrification results and nitrate profile 
results both suggest that nitrate removal from groundwater is widespread in deep sediments of 
streams and rivers in the Waupaca River Network.  Our results suggest that estimates of nitrogen 
processing based exclusively on shallow sediment cores or on whole-stream injections of nitrate 
may underestimate stream ecosystem N-removal by not capturing nitrogen processing that 
occurs in deep sediments.  We think that processes in deep sediments will need to be considered 
when modeling nitrate removal at the network and watershed scales.  Failing to account for 
nitrate removal in deep sediments could lead to errors when closing nitrogen budgets at these 
scales.  Our results also emphasize the importance of healthy intact sediments for groundwater 
nitrate removal in nitrate-contaminated stream ecosystems.   
 
Related Publications: none currently (a manuscript is in preparation) 
 
Key words: nitrate, groundwater, denitrification, sediments, streams, sand plains, 
biogeochemistry, river network, scale 
 
Sources of funding: University of Wisconsin Water Resources Institute; University of Wisconsin 
Oshkosh Faculty Development Program 
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PROJECT COMPLETION REPORT for WR10R005: Groundwater nitrate processing in deep 
stream sediments 
 
Introduction- 
Humans have dramatically altered the nitrogen cycle during the past several decades, doubling 
the amount of fixed nitrogen worldwide (Galloway et al. 2008, Schlesinger 2009).  Global 
increases in fertilizer production and application and increases in nitrogen oxide generated by 
burning fossil fuels are major causes for increases in the amount of available nitrogen in 
ecosystems.  These changes have resulted in increases in the concentration and fluxes of 
available nitrogen in rivers (Howarth et al. 1996, Donner et al. 2002) and increases in the 
concentrations of  available nitrogen in groundwater in many parts of the world, including 
Wisconsin (Browne et al. 2008, Rupert 2008, Saad 2008).   Elevated nitrate in groundwater has 
implications for human health (Kross et al. 1992) and contributes to nitrogen loading in river and 
lakes where groundwater discharges to surface water.  When available nitrate reaches high 
levels, the ability for ecosystems to process this nitrogen can become saturated (Aber et al. 1997, 
O’Brien et al. 2007).  For example, Mulholland et al. (2008) showed that stream water nitrate 
concentration saturated denitrification in streams at the continental scale.   It is less clear if 
elevated nitrate concentration in groundwater saturates nitrate retention and removal mechanisms 
in stream sediments.   
 
Because the supplies of available nitrogen to ecosystems have been increasing and are projected 
to continue to increase, there is growing interest in processes that can retain or remove available 
nitrogen in streams and rivers (Alexander et al. 2000, Mulholland et al. 2008).  Processes 
contributing to nitrate retention in streams include assimilatory uptake by autotrophs and by 
heterotrophic microbes (e.g. Stelzer et al. 2003) and dissimilatory uptake, including 
denitrification, by microbes (Burgin and Hamilton 2007).  Denitrification has been shown to be 
influenced by nitrate concentration, carbon supply, and oxygen status (Arango et al. 2007, 
Groffman et al. 2009).   It is well known that processes in riparian zones (e.g. Hedin et al. 1998), 
in hyporheic zones (where groundwater and surface water mix) (Hill and Lymburner 1998) and 
in the surface water of streams and rivers (Mulholland et al. 2008) can retain and remove 
substantial amounts of available nitrogen.   Much less is known about the role of deep sediments 
beneath the stream channel (below the hyporheic zone) in nitrogen processing.   Many studies of 
nitrogen processing in streams do not include deep sediments.   For example, most studies of 
denitrification in streams only include denitrification measurements from surficial sediments 
(cores less than 5 cm deep) (e.g. Arango et al. 2007, Herrman et al. 2008).  In groundwater-fed 
streams groundwater typically passes through substantial quantities of sediment before 
discharging to the stream.  Previous studies have suggested that available nitrogen is retained 
along upwelling flow paths in deep sediments (Duff et al. 2008, Puckett et al. 2008, Stelzer et al. 
2011).  However, most previous studies have not included process-oriented measurements in 
deep sediments (but see Fischer et al. 2005, Inwood et al. 2007) or have not included the fine-
scale vertical profiles of available nitrogen necessary to infer where nitrogen retention occurs in 
deep sediments.  We have reported fine scale changes in nitrate and chloride concentration from 
a single stream in the Waupaca River Network (in the Central Sand Ridges Ecoregion of 
Wisconsin) that suggests nitrate processing can be substantial in deep sediments associated with 
streams (Stelzer et al. 2011).   In the current study, we determined the applicability of these 
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Groundwater Nitrate Profiles- Piezometers in groups of six (nests) were installed at three 
upwelling locations at each site.  Piezometers were constructed of CPVC (1.2 cm inner diameter) 
with the terminal 4.5 cm screened (3 mm holes covered with 100 m Nitex mesh).  Modified 
Pore Water Hesslein Samplers (peepers) were deployed within each piezometer nest.  The 
piezometers were installed at different depths within each nest so that the nitrate and chloride 
concentrations in relatively deep groundwater (35 to 90 cm) could be characterized while the 
peepers provided nutrient concentrations at 1.3 cm vertical intervals in the 1 to 25 cm range.  
Together, water samples collected from the piezometers and peepers provided a high-resolution 
profile of nitrate and chloride in the sediments to about 70-90 cm.  Groundwater nitrate and 
chloride concentrations were used to calculate NO3-N:Cl- ratios. Unpaired t-tests were used to 
compare the NO3-N:Cl- ratios of deep groundwater (from the 6 piezometers) to those in 
shallower groundwater (from the 6 deepest peeper samples) for each piezometer nest-peeper 
complex.  We predicted that the NO3-N:Cl- ratio would be higher in deep groundwater than in 
shallow groundwater if nitrate removal was occurring in the deep sediments. 
 
Results and Discussion- 
Mean denitrification rates were higher in shallow sediments than in deeper sediments (Table 1, 
ANOVA P <0.01).  However, core sections deeper than 5 cm accounted for about 70%, on 
average, of the total denitrification (integrated throughout the entire core).   The magnitude of 
denitrification rate differed strongly among sites (ANOVA P <0.01, Fig. 2).  At many sites (Fig. 

2a, b, e, f) 
denitrification rate 
was higher in 
shallower sediments, 
while other locations 
showed similar 
denitrification rates 
at various sediment 
depths (Fig. 2c) or 
higher denitrification 
rate in deeper 
sections (Fig. 2d, g).  
Denitrification rates 
tended to be much 
higher on average at 

locations with high concentrations of groundwater nitrate such as Bear Cr., Tomorrow River Site 
II, and Radley Creek (Fig. 2).  Denitrification rate increased linearly with groundwater nitrate 
concentration at low concentrations (<  2 mg NO3-N/L) but denitrification varied considerably at 
high groundwater nitrate concentrations (> 5 mg NO3-N/L), a pattern that suggests nitrate 
saturation (Fig. 3).    
 

Table 1. Denitrification rates (mean, SD, N) by core section for the sites 
 in the Waupaca River Network. 
___________________________________________________________ 
 
Core Section                 Mean                           SD                             N 
(cm)                              (ug N2O-N/cm2/h) 
___________________________________________________________ 
 
0-5 2.04 2.78 33 
5-10 1.98 3.68 33 
10-15 0.94 1.81 33 
15-20 0.68 1.39 33 
20-25 0.71 2.08 30 
25-30 0.80 1.97 17 
____________________________________________________________ 
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Conclusions and Recommendations- 
The denitrification results and nitrate profile results both suggest that nitrate removal from 
groundwater is widespread in deep sediments of streams and rivers in the Waupaca River 
Network.  Our results suggest that estimates of nitrogen processing based exclusively on shallow 
sediment cores or on whole-stream injections of nitrate may underestimate stream ecosystem N-
removal by not capturing nitrogen processing that occurs in deep sediments.  We think that 
processes in deep sediments will need to be considered when modeling nitrate removal at the 
network and watershed scales.  Failing to account for nitrate removal in deep sediments could 
lead to errors when closing nitrogen budgets at these scales.  Our results emphasize the 
importance of healthy intact sediments for groundwater nitrate removal in nitrate-contaminated 
stream ecosystems.  If stream sediments become degraded because of toxin exposure or physical 
removal (e.g. dredging) ecosystem services they provide, such as nitrate removal, may be 
compromised. 
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