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Project Summary 
 
Title: Application of LSQR to Calibration of a Regional MODFLOW Model:  Trout 

Lake Basin, Wisconsin 
 
Project I.D.: WR06R003 
 
Investigator(s): Mary P. Anderson – University of Wisconsin-Madison, Department of Geology 

and Geophysics 
 Haijiang Zhang - University of Wisconsin-Madison, Department of Geology and 

Geophysics 
 
Period of Contract: July 2006 – June 2007 
 
Background/Need: Complex regional groundwater flow models, like the model of the Trout Lake 
basin in Vilas County, Northern Wisconsin, are used to address a variety of research questions including 
the impacts of climate, land use changes, and delineation of flow paths.  Yet, the level of certainty 
expected from predictions made by these models is often beyond what most current calibration techniques 
can provide.  Groundwater models are becoming larger and more complex with many more unknown 
parameters.  Current matrix methods that are used in parameter estimation are not able to solve the large 
matrices associated with these models.  For this reason it is important to explore the applicability of new 
parameter estimation techniques for solving large groundwater problems.  LSQR (Paige and Saunders 
1982a, 1982b) is a parameter estimation method that uses an iterative subspace inversion technique that is 
related to the better known singular value decomposition (SVD).  SVD is currently used by the 
groundwater community.  LSQR is widely used by the geophysical community to solve large problems in 
tomography and is more powerful than SVD in solving large problems. 
 
Objectives: The objectives of this research were to 1) use a synthetic groundwater flow model as a 
test case to develop a strategy for using LSQR to solve groundwater inverse problems, 2) demonstrate 
that a technique used to calculate the model resolution matrix, which is necessary to quantify uncertainty, 
for large seismic tomography inverse problems can be applied to groundwater problems; and 3) use the 
experience gained from the first objective to demonstrate that LSQR gives comparable results to the SVD 
method in estimating parameters for a regional groundwater flow model of the Trout Lake basin. 
 
Methods:  LSQR was tested and compared with the more widely used SVD in terms of 
computational burden, convergence behavior, and parameter values estimated by both methods.  A simple 
two-dimensional “checkerboard” synthetic model was used for this purpose for which all components of 
the inverse problem were exactly known.  Iterative algorithms like LSQR require stopping rules to decide 
when an acceptable solution to the inverse problem has been achieved.  LSQR provides three such rules 
and the effects of these were investigated as part of the synthetic exercise.  An approach described by 
Zhang and Thurber (2007), using a modified LSQR, was used to determine the resolution matrix 
necessary to calculate the uncertainty associated with model predictions.  The LSQR algorithm was then 
used to calibrate the groundwater flow model of the Trout Lake basin and the results were compared to 
the more traditional SVD.  Uncertainty is discussed in the context of using the modified LSQR to 
determine values for the LSQR truncation criterion.  Proper choice of the LSQR truncation criterion is 
important to minimize prediction uncertainty.  
 
Results and Discussion:   The LSQR algorithm was successful in calibrating both the synthetic and 
Trout Lake models and seems to be well suited to the ill-posed inverse problems often encountered by 
groundwater modelers.  The solution speed of LSQR over the traditional SVD is noteworthy.  Several of 
the LSQR test calibrations of the synthetic model yielded similar reductions in the objective function 
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compared with the best performing SVD run, but took a third the time to solve the system.  For the 
synthetic model, all the LSQR test cases were successful in reducing the objective function by at least 
three orders of magnitude, with the most successful LSQR run reducing the objective function from 7.6 to 
3.2E-03.  For the Trout Lake model, both the SVD and LSQR calibrations produced similar results but 
LSQR solved the system in a fraction of the time required by SVD.  Prediction uncertainties calculated 
using the modified LSQR exactly matched those calculated using the traditional SVD method.  
Uncertainties based on pre-calibration estimates were calculated to determine the level of 
parameterization supported by the observations; the LSQR truncation criterion must be set so that the 
number of LSQR iterations is commensurate with the number of parameters supported by the 
observations.  Setting the criterion too tight can result in unrealistic solution times and negate the 
advantage of using LSQR. 
 
Conclusions and Recommendations: The LSQR algorithm shows promise as a robust and versatile 
algorithm for solving large groundwater inverse models that otherwise are not tractable using inverse 
methods such as SVD that are currently used in groundwater modeling.  As computers become faster with 
more memory, current methods will be able to solve for more parameters; however, models will continue 
to increase in size and complexity at the same time and require more parameters for calibration.  As such, 
there will always be a need for alternatives to the traditional approaches.  Through this research, LSQR is 
demonstrated to be a viable means of estimating many thousands of parameters and quantifying the 
uncertainty associated with model predictions for such large models.  Because LSQR is now available as 
an option within the popular inverse program PEST, modelers throughout the State of Wisconsin and 
elsewhere can apply LSQR to their problems now and in the future.  Additional research is needed to 
understand the role of the LSQR closure variables ATOL and BTOL and the effects of SVD-Assist on 
LSQR performance.  Furthermore, the use of the modified LSQR, PROPACK-SVD (Larsen 1998), as an 
alternative to the traditional SVD and LSQR for medium sized problems should be investigated. 
 
Related Publications: 
Muffels, C., R. Hunt, J. Doherty, and M. Anderson.  2007.  Regularized Inversion of a Groundwater Flow 

Model of the Trout Lake Basin.  Presentation at the 2007 American Water Resources Association 
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1-2, 2007. 

Muffels, C., H. Zhang, J. Doherty, R. Hunt, M. Anderson, and M. Tonkin.  2006.  Incorporating 
PROPACK into PEST to Estimate the Model Resolution Matrix for Large Groundwater Flow 
Models.  Presentation at the 2006 American Geophysical Union Fall Meeting, Moscone Center, 
San Francisco, California, December 11-15, 2006.  San Francisco, California. 

Muffels, C., J. Doherty, M. Anderson, R. Hunt, T. Clemo, and M. Tonkin.  2006.  LSQR and Tikhonov 
Regularization in the Calibration of a Complex MODFLOW Model.  Presentation at the 
Geological Society of America Annual Meeting, Pensylvania Convention Center, Philadelphia, 
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Calibration of a MODFLOW Model: A Synthetic Study.  MODFLOW and More 2006, Managing 
Ground-Water Systems, International Ground Water Modeling Center, Colorado School of Mines 
Golden, Colorado, May 22-24, 2006.  Vol. 1.  283-287. 
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Introduction 
 
 The Trout Lake basin (Figure 1) is part of the NSF’s NTL-LTER (Long Term Ecological 
Research) program and the USGS WEBB (Water Energy Biochemical Budgets) program.  Surface water 
systems are well connected to the groundwater system, and there is very little surface runoff; therefore, 
understanding groundwater flow is critical to determine the movement of water and transport of solutes in 
the system (Walker and Bullen 2000).  Recent versions of the Trout Lake basin model by Pint (2002), 
Pint et al. (2003), Hunt et al. (2003), John (2005), and Hunt et al. (2005) are based on the groundwater 
flow code MODFLOW2000 (Harbaugh et al. 2000).  Calibration of the Trout Lake basin model using 11 
parameters is described by Hunt et al. (2005) using UCODE (Poeter and Hill 1998), a universal parameter 
estimation program that solves the inverse problem using a modified Gauss-Newton method (Cooley and 
Naff 1990).  The Trout Lake basin model is designed to be a general purpose watershed model that is 
used to address a variety of research questions, including flow path delineation (Pint et al. 2003, 
Masbruch 2005), climate change (John 2005), and land use change. 

 
Figure 1.  Location map of the Trout Lake basin and the extent of the regional model (red outline). 
 

Calibration of a groundwater flow model involves determining values for n unknown system 
parameters, x (often horizontal and vertical hydraulic conductivities and recharge rate), from a set of m 
field observations, b (often hydraulic heads and stream/river fluxes).  An m x n sensitivity matrix, A, is 
used to relate the parameters to the observations and inform the inverse problem how the model responds 
to perturbations in parameter values. Parameter value updates are calculated according the following 
equation (Cooley and Naff 1990, Doherty 2004), 
 

x = (ATA)-1ATb      (1) 
 

The determination of best parameters is an iterative process that starts with an initial estimate of the 
parameters from which A is determined, and the parameter values are recalculated.  The iterative process 
terminates, ideally, when the objective function, Φ, is a global minimum. 
 

Φ = (b – Ax)T(b – Ax)     (2) 
 

The global minimum is not always easy to find, and the process can be complicated if there are local 
minima.  As such, the initial parameter estimates must be a good approximation of the true values 
(Doherty 2004). 

The inverse problem becomes intractable for these methods as the number of parameters 
increases because it is less likely that the sensitivity matrix can be inverted.  This difficulty can be 
mitigated if the principle of parameter parsimony (Hill 1998) is practiced by parameterizing the model 
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with zones of piecewise constancy.  However, trying to minimize the number of parameters in this way 
restricts and pre-determines the spatial heterogeneity of the system because the zones are determined 
before the process begins (Doherty 2003). 

A means of stabilizing the inverse process to allow many more parameter values to be estimated 
is to regularize the inversion.  Regularization is a method for producing a close approximation to poorly-
posed inverse problems so that they are numerically tractable.  Regularized inversion can take many 
forms, including methods that augment the sensitivity matrix (pre-conditioning methods) and methods 
that truncate the solution calculations (subspace methods) (Tonkin and Doherty 2005).  Pre-conditioning 
methods provide a means by which the modeler can include their “hydrogeological wisdom”.  For 
example, if the aquifer system being modeled is believed to be homogeneous the inverse process can be 
informed of this preference through the formulation of appropriate regularization equations.  With 
regularized inversion there is no need for pre-calibration zoning of spatial heterogeneity (Doherty 2003), 
which is a significant advantage since there is often insufficient information for making informed 
decisions about zonation a priori.  Prior to this research, calibration of the Trout Lake basin model was 
achieved with 1000 parameters using PEST (Doherty 2004). 

Solving large systems in this manner is common place in many scientific applications and 
singular value decomposition (SVD) is the subspace regularization method most often employed.  The 
SVD method decomposes any arbitrary m x n matrix, B, according to: 
 

  B = USVT      (3) 
 

where U (m x m) and V (n x n) contain the left and right singular vectors of B, respectively, and S (m x n) 
the singular values (Lawson and Hanson 1995, Anderson et al. 1999).  The singular vectors represent 
weighted combinations of parameters that comprise each observation value and the singular values 
indicate the magnitude of that influence.  Truncated singular value decomposition (TSVD) is a 
mechanism for determining x from the k most dominant singular vectors according to: 
 

  x = VkS-1Uk
Tb      (4) 

 

Truncation is a form of regularization and is often necessary because the singular vectors associated with 
small singular values magnify the noise inherent in the observed values and contaminate estimation of x. 

Regardless of whether the parameter estimation technique is that employed by UCODE or by 
PEST, or another inverse code, at most the number of parameters uniquely estimable is equal to the 
number of observations.  However, in a typical groundwater problem the observations are noisy and inter-
dependent and do not always contain unique information and so fewer parameters are actually supported.  
A distinction between UCODE and PEST is the manner in which these estimable parameters are treated.  
UCODE, through the use of zones, requires the user to specify these parameters (number, types and 
locations) a priori.  In other words, the modeler is required to provide the model space that can be 
explored during the calibration.  The model space is defined by all the possible combinations of parameter 
values.  PEST, through the use of subspace regularization (TSVD), allows the calibration process to 
determine the model space supported by the observations because it can be well represented by the 
singular vectors corresponding to the dominant singular values.  The PEST program includes a novel 
technique called SVD-Assist (Tonkin and Doherty 2005) that defines these dominant parameters as 
“super” parameters and recasts the inverse problem, posed on the basis of many base parameters, to one 
based on the super parameters.  The calibration only explores the model space defined by these super 
parameters, which requires many fewer forward model runs because only the super parameters are 
perturbed to calculate the sensitivity matrix.  Values for the base parameters, x, are determined from the 
super parameters, xk, using the linear relationships defined in Vk, according to (Tonkin and Doherty 
2005): 
 

 x = Vkxk      (5) 
 

The advantage of using many parameters is that the model space supported by the observations 
can be determined more accurately because more possible parameter combinations can be tested.  The 
problem is that the number of parameters the traditional SVD algorithm can estimate (i.e. the size of the 
matrix it can decompose) is limited by computer memory space and speed (Berryman 2000).  As 
computers continue to get faster and have more memory, the number of parameters that can be estimated 
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by SVD will continue to increase.  For this reason it can be argued that the life-span of alternatives to 
SVD will be short-lived.  However, consider that the computers available 20 years ago when groundwater 
modeling with computers became wide-spread were vastly inferior in speed and memory to the computers 
we have today.  Despite the vastly superior computers we have today, there are groundwater models 
constructed with over 4000 parameters and 4000 observations that cannot be calibrated using SVD 
(Doherty personal communication 2006).  As computers become more sophisticated, models become 
larger and more complex with more parameters.  These models will continue to push the bounds of SVD 
and we will always require alternative parameter estimation techniques. 

The most efficient method available to solve large linear seismic tomographic systems is LSQR.  
LSQR is an iterative inversion technique that uses the Lanczos bidiagonalization process for reducing the 
matrix A to bidiagonal form and then minimizes the least squares norm ||Ax - b||2 using QR factorization 
(Paige and Saunders 1982a, 1982b).  The LSQR is better suited to large problems than SVD because it 
requires much less storage and can quickly iterate to a solution.  However, it cannot directly calculate the 
model resolution matrix because vectors obtained from the Lanczos process do not retain orthogonality as 
they iterate due to finite machine precision.  The model resolution matrix is important because it is used 
to evaluate the ability of the real observations to estimate the model parameters (Aster et al. 2005) and to 
quantify the uncertainty in predictions made with the model (Moore and Doherty 2005).  It was originally 
proposed that a model independent parameter estimation program be developed that uses the LSQR 
algorithm.  Partly owing to early results of this research, LSQR was incorporated into the widely used 
code PEST (Doherty 2004) and is available free from www.sspa.com/pest. 

LSQR has four input parameters to control the number of iterations needed to solve equation 1:  
ATOL, BTOL, CONLIM, and ITNLIM.  Paige and Saunders (1982a) and Doherty (2007, addendum to 
the PEST manual) give a description of each and recommend values.  The ATOL and BTOL parameters 
represent the user assumed accuracy of the sensitivity matrix A and the observation vector b, respectively.  
When using perturbation sensitivities, Doherty (2007) suggests that ATOL and BTOL are of the order 
10-2 and 10-3, respectively. The variable CONLIM is a limit on the condition number of matrix A and is 
intended to prevent small or zero singular values from affecting the solution (Paige and Saunders 1982a), 
which is similar to TSVD.  If, for each singular value, the ratio of the highest value to the current value is 
calculated, the variable CONLIM can be thought of as an upper bound on this ratio.  That is, when the 
ratio of the highest estimated singular value to the current value in any iteration exceeds CONLIM then 
LSQR will terminate.  This value is opposite to the PEST variable EIGTHRESH, which is the ratio of the 
lowest to highest singular value and the cutoff used to determine k for TSVD.  The ITNLIM variable is an 
upper bound on the number of iterations that controls termination of LSQR. 

A method described by Zhang and Thurber (2007), which makes use of PROPACK-SVD (Larsen 
1998), was used to calculate the resolution matrix.  The PROPACK-SVD algorithm is based on Lanczos 
bidiagonalization with partial reorthogonalization and only estimates a user-specified number of singular 
values rather than all of them, which is a significant time savings and allows it to be used with large 
models.  With the Zhang and Thurber (2007) method, the model is first calibrated using LSQR and then 
the PROPACK-SVD is used to estimate the k dominant singular vectors of the final sensitivity matrix that 
are needed to calculate the resolution matrix according to: 
 

  R = VkVk
T      (6) 

 

where R is the model resolution matrix.  Moore and Doherty (2005) present the following equation to 
calculate predictive error variance (synonymous with uncertainty): 
 
  

  σ2 = yT(I – R)C(x)(I – R)Ty + yTGC(ε)GTy  (7) 
 

where σ2 is the total predictive error variance, y is an n-row vector of the sensitivity of the prediction 
(observation) of concern to model parameters (i.e. a row from the sensitivity matrix), I is the n x n 
identity matrix, C(x) is the n x n parameter covariance matrix, G is an n x m matrix and is equal to (ATA)-

1AT such that x = Gb, and C(ε) is the m x m covariance matrix of the data noise.  The first term on the 
right-hand side of the equation is the contribution to a prediction’s uncertainty due to the inability of the 
calibration to determine the true parameter set and the second term is the uncertainty due to the inability 
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of the calibration to determine a parameter set that exactly reproduces the observations due to noise.  A 
more detailed explanation of this equation is beyond the scope of this report, but it is important to note 
that the two terms in equation 7 
compete: increasing the number of 
parameters reduces the uncertainty due 
to the first term and increases the 
uncertainty due to the second term 
(Figure 2).  Typically, prediction 
uncertainty is calculated after a model 
has been calibrated; however, 
calculating the pre-calibration 
uncertainty for different levels of 
parameterization can be used to 
determine the number of parameters that 
are supported by the observations.  The 
number of parameters that should be 
used with TSVD or SVD-Assist is the 
number of parameters that minimizes the 
prediction uncertainty.   
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Figure 2.  Idealized prediction uncertainty curves demonstrating 
trade-off between the two terms on the right-hand side of 
equation 8. 

Procedures and Methods 
 

Synthetic Problem.  To test the LSQR, a synthetic groundwater flow model was constructed in 
MODFLOW2000, which is a widely used code developed by the U.S. Geological Survey.  The model 
was calibrated with PEST using SVD, as well as LSQR, to provide a base from which to draw 
conclusions regarding the convergence and computational burden of LSQR.  Using the experience gained 
from this synthetic exercise the flow model of the Trout Lake basin was calibrated using LSQR and SVD.  
The synthetic model was two-dimensional with 32 rows and 32 columns; each cell had dimensions of 1 ft 
by 1 ft.  Constant-head boundaries of 40 ft and 32 ft were specified on the left and right sides of the model 
with no-flow conditions along the top and bottom.  Two zones (1ft/day and 100 ft/day) of hydraulic 
conductivity were evenly distributed throughout the model in a checkerboard pattern (reference 5, 
Appendix A).  To test LSQR, the model was calibrated to the model calculated heads (for the true 
hydraulic conductivity distribution) using hydraulic conductivity as the only variable parameter. 
Hydraulic conductivity was assumed to be isotropic and was assumed unknown in each model cell; the 
starting value for each parameter was calculated as a random fraction (up to ±50 %) of the true value.  In 
total there were 1024 parameters and 1024 observations.  The model was calibrated with PEST using both 
SVD and LSQR.  Different levels of truncation were used with the SVD calibration to illustrate the 
effects of subspace regularization, TSVD.  The LSQR was tested by first using the default LSQR settings 
for ATOL, BTOL and CONLIM and then varying those numbers to evaluate effects on the final 
calibration (Table 1).   
Trout Lake Basin Model. There are 230 rows and 240 columns and 6 layers in the Trout Lake model.  
Each cell is 75 x 75 ft.  The boundaries of the model are specified fluxes, which are calculated by an 
analytic element screening model (Hunt et al. 1998) that encompasses a larger regional area.  The 
boundary conditions are implemented using MODFLOW’s Well Package.  Details on model design and 
calibration are contained in Muffels (reference 1, Appendix A). 

For the purposes of this research, the model was calibrated using 1501 parameters and 120 
observations.  Parameter types included horizontal and vertical hydraulic conductivity, bed conductance 
for lakes and streams, which were represented using MODFLOW’s River Package, and porosity, which is 
used in particle tracking simulations.  Recharge was not used as a parameter; its distribution and values 
were taken from a previous calibration by Hunt (personal communication 2007).  The parameters were 
represented as pilot-points; nodal values for each cell in the model were interpolated from these pilot 
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Table 1.  Summary of SVD truncation levels, k (with corresponding EIGTHRESH values in parentheses), and 
LSQR stopping criteria (ATOL, BTOL, CONLIM, and ITNLIM) used to test SVD and LSQR with the 
synthetic model. 

Run ATOL BTOL CONLIM ITNLIM
Truncation Level, k 

(EIGTHRESH)
1 - - - - 960 (1E-14)
2 - - - - 512 (1E-08)
3 - - - - 200 (1E-04)
4 - - - - 380 (1.5E-05)
5 - - - - 600 (1.0E-10)
1 1.0E-06 1.0E-06 1.0E+06 5000 -
2 1.0E-03 1.0E-03 1.0E+06 5000 -
3 5.0E-05 5.0E-05 1.0E+06 10000 -
4 1.0E-06 1.0E-06 1.0E+04 5000 -
5 1.0E-12 1.0E-12 2.0E+06 30000 -
6 1.0E-12 1.0E-12 1.0E+06 600 -

LS
Q

R
SV

D

 
 

points using kriging (Doherty 2003).  Observation types included hydraulic head, horizontal and vertical 
head differences, groundwater flux estimates to and from the lakes, baseflow estimates for each stream, 
and travel time and depth of flow paths determined from isotope analyses for flow paths from Crystal 
Lake to Big Muskellunge Lake, and from Big Muskellunge Lake to Allequash Lake.  The particle-
tracking program MODPATH (Pollack 1994) was used to determine the simulated equivalent to travel 
time and depth of flow path.  The objective function was calculated as a weighted difference between 
simulated and observed values (equation 2).  Each observation was normalized using weighting functions 
(Moore and Doherty 2005) so that each observation type contributed equally to the objective function, Φ.  

The calibration was performed using both SVD-Assist (Tonkin and Doherty 2005) with a 
preferred-value regularization scheme for each parameter, and LSQR.  The preferred values chosen for 
each parameter were taken from the values estimated by Pint (2002).  For demonstration purposes for this 
report the prediction of primary interest was arbitrarily chosen to be the groundwater discharge to Big 
Muskellunge Lake.  The Trout Lake basin model was then calibrated with PEST using both LSQR and 
SVD.  A method described by Zhang and Thurber (2007), which uses the PROPACK-SVD algorithm to 
determine the singular vectors necessary to calculate the resolution matrix, was used to calculate 
prediction uncertainty.  To do so, a utility called PREDVAR1 (Doherty 2007) was modified to call the 
PROPACK-SVD routine rather than that of the more traditional SVD.  PREDVAR1 calculates prediction 
uncertainty according to equation 7.  Uncertainty was calculated to determine truncation levels for LSQR 
to demonstrate the modified LSQR works and could be used for a more rigorous post-calibration 
uncertainty analysis if need be. 

Results and Discussion 
Synthetic Problem.  A value for the variable EIGTHRESH (Table 1) must be selected to determine the 
truncation level, k, for the TSVD.  Because this is a synthetic exercise with no “real” prediction of 
concern, a simple procedure was used for this research to determine the truncation level for SVD.  A plot 
of the ratio of each singular-value to the highest value for every parameter (Figure 3) was constructed.  
The shape of the resulting curve is different for each problem, but the ratio will always decrease with 
increasing parameter number.  The procedure involves choosing a truncation level based on obvious 
breaks or inflection points in the curve.  From Figure 3, obvious breaks are at EIGTHRESH values of 1E-
14 and 1E-08 or 960 and 512 parameters respectively.  The break at 960 parameters is caused by the 
specified head boundary conditions.  The 64 parameters associated with the constant-head cells on the 
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left and right boundaries were included in the 
calibration but the sensitivities of these 
parameters are very low and contribute little to 
the calibration.  The cause of the break at 512 
parameters is unknown.  A third cutoff was 
chosen arbitrarily at 200 singular values 
(EIGTHRESH ~ 1E-04) to demonstrate the 
effect of using too few parameters.  A 
summary of the results for the SVD runs 
(Table 2) shows that, of these three runs (SVD  
runs 1, 2, and 3), the lowest objective function     
value, phi, was attained by SVD run #2 that 
used 512 singular values.  The results of SVD 
runs 1 and 3 demonstrate the effect of 

truncating too early or too late as they achieved a phi an order of magnitude higher than SVD run 2. The 
results of SVD runs 4 and 5 are discussed below because they were performed after the LSQR runs were 
completed. 

Figure 3.  Ratio of each singular value to the highest 
value (defined as variable EIGTHRESH in PEST) for 
each of the 1024 parameters in the synthetic model. 

 For the LSQR runs, the 
CONLIM values (2E+13, 1.8E+07, and 
1E+04) were chosen because they 
correspond roughly to the inverse of the 
EIGTHRESH values used.  The results 
for the CONLIM value of 2E+13 are 
not presented because the solution time 
was too long and negated the 
advantages of LSQR.  Results for 
LSQR runs (Table 2) show that the 
lowest phi values were achieved by 
LSQR runs 5 and 1 as these runs had 
the tightest convergence criteria with 
respect to ATOL, BTOL and CONLIM 
(Table 1).  These two runs also took the 
most time to solve the system of 
equations; in fact they took longer than 
the complete decomposition of the 
sensitivity matrix using SVD.  So, even 
though a better fit to the observations 
was achieved using LSQR, it took too much time to solve the system of equations.   

Table 2.  Summary of calibration results for SVD and LSQR runs.

Run

A
verage Tim

e to 
Solve System

 
(seconds)

# O
ptim

ization 
Iterations

# M
odel R

uns

Low
est PH

I

1 45 9 9217 3.1E-02
2 45 7 7169 3.2E-03
3 45 8 8193 2.1E-02
4 45 8 8193 4.8E-03
5 45 11 11265 7.2E-04
1 210 10 10241 3.5E-04
2 3 11 11265 4.0E-03
3 3 4 4097 3.4E
4 15 6 6145 3.2E-03
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 The success of LSQR for this problem is made evident in the results of LSQR runs 2, 3, and 4.  
Each of these runs achieved an objective function similar to that of SVD run 2 (512 singular values), but 
took much less time to solve the system to achieve these results (Table 2) (note these results are not 
compared to SVD run 5 because there is no obvious reason to choose an EIGTHRESH cutoff at 600 
singular values; see discussion below).  Also, LSQR runs 3 and 4 required significantly fewer 
optimization iterations (and correspondingly fewer forward model runs).  This result can be important if 
the most time intensive aspect of the calibration process is generating the sensitivity matrix.  However, 
depending on the inverse problem, this result may not always be the case. 

The variable CONLIM had a value of 1E+04 for LSQR run 4, which corresponded to 360 LSQR 
iterations.  For early LSQR iterations, the number of singular values (and vectors) estimated roughly 
corresponds to the number of iterations. So for LSQR run 4, terminating at iteration 360 corresponded to 
estimating the first 360 singular values which, according to Figure 3, corresponds to EIGTHRESH of 
about 1.5E-05.   To test this result, an additional TSVD run, SVD run 4, was completed with 
EIGTHRESH set to 1.5E-05.  The lowest phi achieved was similar to that of LSQR run 4 (Figure 4).  The 
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number of singular values used in each 
solution with the TSVD method is about the 
same as the number of iterations required by 
the LSQR method (Figure 4).   However, this 
is only true for very early LSQR iterations as 
the Lanczos vectors used to approximate the 
singular vectors quickly lose orthogonality 
(Zhang and Thurber 2007).  As a test, an 
LSQR run was conducted with the iteration 
limit, ITNLIM, set to 600 and the results 
compared with an additional SVD run that 
truncated the solution after 600 singular 
values.  The SVD run 5 (600 singular values) 
yielded a much lower phi (on a scale 
commensurate with LSQR runs 1 and 5) than 
the LSQR run, which indicates that the 
Lanczos vectors had lost orthogonality and so 
contaminated the estimation of the parameter 
values.   
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Figure 4.  Objective function (phi) values and the number of 
singular values used or estimated for each optimization 
iteration for SVD run 4 and LSQR run 4.  

 
Trout Lake Basin Model.  Moore and Doherty (2005) outline a process that is incorporated in utility 
PREDVAR1 of PEST to estimate the uncertainty associated with a model prediction, which is used to 
determine the level of parameterization necessary to minimize that uncertainty.  The source code of this 
utility was altered to call the modified LSQR algorithm, PROPACK-SVD, to use with the LSQR 
calibration.  The pre-calibration uncertainty estimated using the modified and the original PREDVAR1 
executables for the prediction of groundwater flux to Big Muskellunge Lake for different degrees of 
parameterization is shown in Figure 5 (only the pre-calibration uncertainties were calculated for the 

purposes of this report as the objective was to 
demonstrate that the PROPACK-SVD works).  From 
this figure the level of parameterization supported by 
the observations is about 35 parameters and so 50 
super parameters were used with SVD-Assist (a few 
extra were chosen to give the calibration process 
some freedom to explore more or fewer parameters 
during the calibration process).  In using LSQR the 
limiting closure variable was ATOL; iterations 
terminated after about 40, which was commensurate 
with the number of parameters supported by the 
observations (Figure 5).  The SVD run was set with a 
very low EIGTHRESH value and the number of 
singular values used capped at about 40 
corresponding to the number of LSQR iterations.  
Both the LSQR and SVD runs reduced the objective 
function from 800 to 300.  The reduction is 
relatively small because this calibration started with 

results from a previously calibrated model by Hunt (personal communication 2007).  The reduction is 
significant because we show that the calibration is improved by these methods.  Furthermore, the LSQR 
algorithm took just a few seconds to find a solution for each optimization iteration, while SVD took 
several minutes.  This result is significant because it is a 90% speed improvement over SVD.  A synthetic 
test was conducted by Muffels et al. (2006) with 4000 parameters and 8000 observations.  The SVD took 
over an hour to decompose the corresponding sensitivity matrix while LSQR took only a few minutes to 
return a comparable solution. 
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Figure 5.  Total predictive error variance per 
singular value for the discharge to Big Muskellunge 
Lake prediction calculated by the traditional SVD 
and PROPACK-SVD.  
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The kriged fields that resulted from the two different calibration techniques (Figure 6) are shown 
for the first model layer.  A comparison of all the parameter values is presented in Figure 7.  In Figure 6, 
the values of specific parameters are not shown because they are not as important as the net effect of the 
kriging of these parameters in the delineation of heterogeneities.  Any parameter values estimated 
between 8 and 10 m/day are not colored to indicate no change in value during the calibration.  Lower 
conductivity features are colored brown while higher conductivities are colored green.  The circled area 
encompasses the area where observations are present; parameters in this area are the most sensitive and so 
the heterogeneities in this area are the focus of our attention.  The numbers indicate the major 
heterogeneity features delineated.  These features correspond very closely between the two methods 
demonstrating that LSQR was able to calibrate the model and return a set of parameter values comparable 
to that of SVD for layer 1. 

 

b)a) 

Figure 6.  Hydraulic conductivity field estimated by a) SVD and b) LSQR for the first layer of the Trout Lake 
model.  Colors represent hydraulic conductivity ranges in m/day (not colored is the 8 – 10 m/day range). 

 
The similarity in results for the other parameters is 
summarized in Figure 7.  It shows that 1165 of the 
1501 parameter values estimated by LSQR were no 
more than 20% different from the value estimated for 
the same parameter using SVD.  Values estimated for 
porosity were the most different between the two 
calibrations.   The values estimated by LSQR were 
more reasonable as they ranged between 0.11 to 0.2 
compared with a range of 0.005 to 0.2 for SVD. 

Conclusions and Recommendations 
 
Alternative methods to estimate parameter 

values for large groundwater flow models are needed 
because currently the limit on the number of parameters that can be estimated is determined by the 
computing power available to the modeler.  Hence, large complex models cannot be adequately calibrated 
to minimize the uncertainty in model predictions.  Large geophysical models are limited in the same 
manner but this community has explored alternative parameter estimation techniques and determined that 
LSQR is the most efficient method currently available to solve their large problems.  This research 
demonstrated that LSQR is a viable option for large groundwater models.  
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Figure 7.  Frequency plot of the percent 
difference of values estimated using LSQR from 
those for the same parameter estimated using 
SVD, calculated as abs[(xSVD-xLSQR)/xSVD]. 
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The LSQR method successfully calibrated both the synthetic and Trout Lake basin models.  The 
sub-space regularization that is implicit in the iterative nature of LSQR is well suited to groundwater 
inverse models as these are often ill-posed and severely under-determined.  Because the algorithm is now 
an option in the widely used and free parameter estimation program PEST (Doherty 2004), modelers 
throughout the state of Wisconsin and elsewhere, can apply it to a wide variety of calibration problems.  
When using LSQR it is important that the number of LSQR iterations be commensurate with the number 
of parameters supported by the observations.  This number can be determined in a number of ways, but 
the PEST utility PREDVAR1 provides a means of determining it in the context of minimizing the 
uncertainty associated with key model predictions (e.g., Figure 5).  The LSQR stopping criteria, ATOL, 
BTOL and CONLIM, should be set so that LSQR terminates at about the desired number of iterations.  
Caution should be exercised as setting these variables too tight can cause long solution times, which 
might be an indication that the vectors used to approximate the singular vectors are no longer orthogonal 
and may be contaminating the resulting parameter values.  If thousands of parameters are being estimated 
as part of a calibration process and LSQR is being used it is likely that a technique such as SVD-Assist 
will be necessary so that calculation of the perturbation sensitivities is tractable.  This technique was 
successfully used with LSQR and the Trout Lake basin model, but more research into its effect on LSQR 
performance is needed and is a topic for future study. 

The PROPACK-SVD routine was added as an option to PREDVAR1 and successfully used to 
calculate the prediction uncertainty for the Trout Lake basin model.  (However, at the time of this report, 
the modified version of the utility was not yet available for download with the PEST suite of programs at 
www.sspa.com/pest.)  Beyond calculating the model resolution matrix, this algorithm could be used as an 
alternative to both the traditional SVD and LSQR algorithms for medium sized problems.  Its advantage 
over the traditional SVD algorithm is that it does not have to decompose a matrix entirely; the user can 
specify the number of singular values and vectors desired, which is likely to be a significant time savings.  
This idea is similar to terminating LSQR after a specified number of iterations; however, the PROPACK-
SVD method does not suffer from a loss of orthogonality in the same manner and will accurately 
calculate the singular values and vectors rather than approximate them.  It is recommended that a future 
study examine the use of the PROPACK-SVD routine as a solution technique. 
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The Trout Lake basin model is a three-dimensional general purpose MODFLOW-based watershed model 
used to address a variety of research questions including flow path delineation, and climate and land use 
change.  The flow system is dominated by groundwater flow that is well connected to the surface water 
system; thus, a good groundwater model is critically important in determining the movement of water and 
transport of solutes in the system.  The latest versions of the model are quite sophisticated, allowing for 
dynamic interaction with 30 lakes and 5 streams.  The model has been historically calibrated using a small 
number of parameter values; however, recent calibration using many more parameters has been employed 
to attempt to capture more of the spatial system heterogeneity.  To constrain model calibration with a 
large number of parameters, a “regularized inversion” approach was used in this research.  Regularization 
can take many forms and is a means of stabilizing large problems by using subjective information about 
the parameters based on the current hydrogeologic understanding of the system in addition to field 
measurements.  In this paper, the results of using different regularization schemes including Tikhonov, 
truncation, and damping to calibrate the Trout Lake model are presented.  Results show that using a 
preferred homogeneity Tikhonov scheme improved the model fit to field measurements. 
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PROPACK into PEST to Estimate the Model Resolution Matrix for Large Groundwater Flow 
Models.  Presentation at the 2006 American Geological Union Fall Meeting, Moscone Center, San 
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Regularized inversion of groundwater flow models can be used to determine heterogeneities using 
subspace methods like the singular value decomposition (SVD).  To better characterize the heterogeneity 
of the model, thousands of system parameters and, with appropriate regularization, thousands of 
observations may be necessary.  The SVD is not practical because it requires significant memory space 
and is time consuming.  We have demonstrated (Muffels et al.  2006a, b) the LSQR can be used to 
estimate the many unknown parameters in large groundwater flow inverse problems.  However, in doing 
so, a resolution analysis is needed to characterize how reliable the resulting model parameters are.  We 
adopted an approach described by Zhang and Thurber (2006) for large seismic tomography problems and 
incorporate the PROPACK package developed by Larsen (1998) into PEST, a model independent 
parameter estimation program.  PROPACK is able to efficiently and accurately estimate singular values 
and vectors for large matrices based on the Lanczos bidiagonalization, the core of LSQR, with partial 
reorthogonalization.  Compared with other LSQR-based resolution approaches, this PROPACK-based 
approach calculates the full resolution matrix.  We estimate the model resolution matrix for a synthetic 
approximation to the real-world regional MODFLOW model of the Trout Lake Basin, Wisconsin, and 
compare it with that of the more common SVD. 
 
4) Muffels, C., J. Doherty, M. Anderson, R. Hunt, T. Clemo, and M. Tonkin.  2006.  LSQR and 

Tikhonov Regularization in the Calibration of a Complex MODFLOW Model.  Presentation at the 
Geological Society of America Annual Meeting, Pensylvania Convention Center, Philadelphia, 
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Employing a-priori parameter parsimony to solve the inverse problem in groundwater modeling is 
conceptually appealing, but has several downfalls – not least of which is that the solution of the inverse 
problem is restricted to a very limited subspace of the true parameter space. The alternative is to estimate 
a very large number of parameters and allow the calibration process to determine where heterogeneity 
may exist. Estimating a large number of parameters during model calibration requires rapid and memory-
lean matrix solution techniques that can accommodate highly parameterized models. We demonstrated 
(Muffels et al, 2006) that although the LSQR - an iterative matrix solution technique similar to the 
methods of conjugate gradients - can solve the large matrix equations that are produced when thousands 
of parameters are estimated, convergence can be disappointing. Here, we explore the role of Tikhonov 
regularization, when employed together with LSQR, for stabilizing the inverse problem and for 
improving the convergence of a local-approximation to the true inverse problem. The model application is 
a synthetic approximation to the real-world regional MODFLOW model of the Trout Lake Basin, 
Wisconsin. Since the number of parameters greatly exceeds the number of observations, parameter 
sensitivities are calculated using the adjoint-state method. We compare the results to the most commonly 
employed subspace method, the truncated singular valued decomposition (TSVD). Discussions focus on 
the advantages – or otherwise – of the Tikhonov regularization, and on the improvement(s) in inference 
gained through the use of a large number of parameters. 
 
5) Muffels, C., M. Tonkin, H. Zhang, M. Anderson, and T. Clemo.  2006.  Application of LSQR to 

Calibration of a MODFLOW Model: A Synthetic Study.  MODFLOW and More 2006, Managing 
Ground-Water Systems, International Ground Water Modeling Center, Colorado School of Mines 
Golden, Colorado, May 22-24, 2006.  Vol. 1.  283-287. 

 
The inverse problem in groundwater modeling is often made numerically tractable and computationally 
practical by estimating only a small fraction of the many unknown system parameters. However, this 
parsimonious approach restricts the solution of the inverse problem to a pre-determined subspace of the 
true parameter space. To reflect detailed local variations in hydraulic conductivity or recharge, it may be 
desirable to estimate a very large number of parameters during calibration, which requires an inversion 
technique that can accommodate highly parameterized models. The least-squares QR decomposition 
(LSQR) is an iterative subspace solution method that can solve for many hundreds or thousands of 
parameters.  LSQR has been used successfully in seismic tomography inversion problems.  As an iterative 
method, LSQR can solve sparse and dense inverse problems of the form AX=B using significantly less 
computer storage than direct solution methods.  We test the applicability of the LSQR method for solving 
the inverse problem for groundwater flow using a synthetic model, and compare results with those 
obtained using the most commonly employed subspace method, the truncated singular valued 
decomposition (TSVD).  Parameter sensitivities are calculated using the adjoint-state method.  Both over-
determined and under-determined synthetic problems are investigated. 
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