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FROM: William C. Sonzogni éaﬁ?
RE: Final Report- Ground Water

Research Program on Improved
Dectection Limits for Ground
Water Monitoring

CC: Ron Arneson, Mike Zorn

Please find enclosed a final report on our research

project. We believe the project has been very successtul.
We still have some more research we expect to finish up in
the next few months. It will be included in Michael Zorn's

Ph.D. thesis, and I will be sure to make that information
available to the Groundwater Coordinating Council and the
Department .

On behalf of Mike and I, I want to thank the
Groundwater Coordinating Council and the Department for
sponsoring our research. We hope we have made some
contributions that will result in an appreciable return on
the investment.







Improved Detection Limits for Ground

Water Monitoring

Final Report

This study was designed to improve the detection of
trace contaminants in ground water. The objectives were to
(1) devélop a new approach to concentrating sample analytes
(while minimizing interferences) for the purpose of reducing
detection limits, and (2) apply a more rigorous, but
practicable, computational method for the analytical limit
of detection.

We have accomplished our first dbjective by developing
an on-line supercritiéal fluid extraction/gas
chromatographic (SFE/GC) technique for decermining trace
quantities of pesticides and PCB’'s in water. This procedure
is faster, cleaner, and cheaper than the conventional
Soxhlet extraction/gas chromatographic technique. Also, the
on-line SFE/GC method should realize gains in sensitivity of
three orders of magnitude, resulting in greatly improved
detection limits, much smaller sample size reqguirements, or

both.






Qne of the developments in this work is a procedure for
physically handling and transferring the XAD-2 resin at a
very small scale. Rather fhan passing 80 L-160 L of water
through 125 g of resin, the developed procedure uses 50 to
200 mL of water passed through approximately 350 mg of
resin. The water sample is passed through a stainless steel
extraction column where the analytes are retained by the
XAD-2. The water remaining in the extraction column is
removed prior to the SFE/GC analysis by passing high purity
nitrogen through the sample at £0°C. The time required for
the nitrogen drying process to guantitatively extract the
PCB’'s from the XAD-2 resin still needs to be optimized.

Experiments designed to recover a PCB standard spiked
onto an inert matrix yielded near quantitative recovery
(between 85 and 115 percent). This suggests that the
analytes are being quantitatively trapped for subsequent gas
chrométographic analysis. Experiments involving a PCB
tétanaard spiked onto a clean sample of XAD-2 adsgorbent resin
have also yielded near guantitative recovery. Extraction of
PCB’'s spiked onto a sample of XAD-2 may not completely mimic
the process of extracting PCB’'s from an actual water sample,

so we have some more work to do before completely verifying

o



the usefulness of this'technique. . However, we expect to
test a water sample containing measurable levels of
pesticides and PCB’s and finalize the technique in the next
few months. We are very excited about this technique as it
could greatly improve our ability to do trace analyses of
groundwater by chromatographic techniques. It also has
tremendous potential for improving our ability to measure
trace organics in surface waters, such as Lake Michigan.

We have also accomplished our second objective,
completing work on a statistically rigorous method for
calculating the limit of detection. We believe this
crocedure provides a significant imprbvement to the current
mecthod of calculating the detection limit based on the
standard deviation of replicate measurements at a single
concentration. This work was recently published in
Analytical Chemistry. A copy of the paper is included with
this final report; we will be happy to provide additional
reprints i1f needed. This material was also presented at the
American Water Resources Association (AWRA) meeting March 6
and 7, 1997 and at the Society of Environmeﬁtal Toxicology
and Chemistry (SETAC) meeting April 2-4, 13897. Also, we made

a presentation on the topic to the Integrated Science

(OS]



Services staff of the Department of Natural Resources. We
are currently developing simplifications to the technique so
that it can be applied routinely in analytical chemistry
laboratories.

Finally, I want to mention that this grant helped
support Michael Zorn in his pursuit of a Ph.D. Mike has
performed extremely well, receiving straight A grades in his
graduate courses. He has also made great progress on his
dissertation, and he expects to be finished by the end of
the year. The Wisconsin Coordinating Council deserves
credit for helping to provide this opportunity to Mike (a

Wisconsin native, by the way) .
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Weighted Least-Squares Approach To Calculating
Limits of Detection and Quantification by Modeling
Variability as a Function of Concentration

Michael E. Zorn,! Robert D. Gibbons,* and William C. Sonzogni*t

Waier Chiemistry Program, University of Wisconsin—iviadison, Madison, Wisconsin 53706, and Depanimerit of Biostatistics,

University of lllinois—Chicago, Chicago, lllinois 60612

The limit of detection and limit of quantification are
Cuwent critical issues in environmental testing, In most
labsratories, limits are currently calculated on the basis
of fie standard deviation of replicate analyses at a single
comzentration. However, since the standard deviation
depends on concentration, these single-concentration
teciniques result in limits that are directly dependent on
spiking concentration. A more rigorous approach uses a
weighted least-squares regression analysis of replicates
spiked at a series of concentrations—a calibration design.
In his work, the use of weighted tolerance intervals is
inttoduced for estimating detection and quantification
limits. In addition, models for estimating the weights
used in calculating weighted prediction intervals and
weighted tolerance intervals are presented. Using this
method, detection and quantification limits were calcu-
lated for gas chromatographic analyses of 16 polychlori-
natgd biphenyls. Results show that the approach devel-
oped provides improved estimates of analvtical limits and
thaythe single-concentration approaches currently in wide
useare seriously flawed. Future work should reduce the
dat needed for the calibration design approach so that
more rigorous detection and quantification limits can be
routinely applied. '

Chemists are concerned with two types of limits when
evalyating data quality. The first is a limit of detection. used to
decife whether or not an analyte is present; the second is a limit
of quantfication, used to decide whether or not the concentration
of ag analyte can be reliably determined. Current calculation
techriques derive detection and quantification limits from vari-
ability in analyte response at a single, arbitrary spiked concentra-
tion (U.S. EPA’'s MDL! and ML?. These single-concentration
designs are inconsistent when response variability is not constant
with concentration, resulting in calculated limits directly depend-
ent sn spiking concentration. More rigorous techniques that
utilize a series of standards spiked over a range of known
concentrations (calibration designs) can account for nonconstant
variance as well as calibration error. In this study, we extend
current calibration design techniques for calculating detection and
quantification limits by applying a model of response variability
as a function of concentration to linear least-squares regression.

* University of Wisconsin—Madison.
! University of linois—Chicago.
(1) U.S. EPA. Fed. Regist. 1984, 49 (No. 209), 43430—43431.
(2 US. EPA. Guidance on Evaluation, Resolution, and Documentation aof
Asalytical Problems Assaciated with Compliance Moniioring, EPA/SDL-B40-
1; U.S. Environmental Protection Agency: Washington, DC, 1993,

$0003-2700(97)00082-6 CCC. $14.00 © 1997 American Chemical Society

»

Unweighted Least-Squares Regression Analysis. Calibra-
tion designs require measurement of replicate spikes at a series
of analyte concentrations spanning the estimated detection and
quantification limits. A leastsquares regression analysis is
performed of response (¥) on analyte concentration (X), expressed
as a linear, first-order model of the form

V=by+bX+e O

where by is the intercept, 6, is the slope. and € represents error in
the response measurement or deviation from the fitted regression
line. Errors are assumed to be independent and normally
distributed with mean zero and constant variance.

Calibration design detection and quantification limit estimators
are based on predicton intervals or tolerance intervals. Prediction
intervals provide (1 — a)100% confidence of including the next
single instrument response (or measured concentration) at the
true concentration (X), whereas tolerance intervals provide (1 —
@) 100% confidence of including (P)100% of the entire population
of instrument responses at the true concentraton. For example,
a tolerance interval with a = 0.01 and P = 0.99 would provide
99% confidence of including 99% of future instrument responses
at X.

Assuming constant variance, the prediction interval around a
predicted response (¥7) at concentration X, is defined by

1 ‘ (‘X;__X)Z 1/2

V=Y =ty amens|l + 2T T S (@)

J

where #(-q/24-2 is the (1 — a/2)100 percentage point of Student’s
¢ distribution on n — 2 degrees of freedom, s is the residual
standard deviation, » is the number of measurements, X is the
mean concentration, and Sex = T (X; — X)°. Prediction intervals
are appropriate for determining detection and quantification limits
calculated routinely for a small number of future analyses—for
rigorous application, only one future sample is covered. Hubaux
and Vos® developed detection limit theory using prediction
intervals of this form.

Tolerance intervals are wider and will provide larger estimates
of detection and quantification limits than corresponding prediction
intervals. However, inference to a large and potentially unknown
number of future detection decisions is possible with a high
degree of confidence, making tolerance intervals attractive for
routine application in commercial laboratories. Lieberman and

(3) Hubaux, A Vos, G, Anal Trhem 1970 (2. 249-855,
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Miller* developed tolerance intervals for linear leastsquares
regression that simultaneously bracket the expected values 09}
for all values of X. These “simultaneous” intervals provide an error
band on the entire calibration line. Tolerance intervals at a given
concentration (nonsimultanecus) may be more appropriate for
calculating detection and quantification lirnits. A nonsimultaneous
solution to the Lieberman and Miller equation can be obtained
by substituting Student’s ¢ for the factor (2F)'/?, as described by
Miller$ Nonsimultaneous tolerance intervals are given by

. (X _X)Z 1/2
V=Y =% S{t(1~a/2.n-2)[l + +

n Sxx
— 1/2
N(P)(“/nzx? ) } ®

n—2

where N(P) is the two-sided P percentile point of the unit normal
distribution, and /%> _, is the (0/2)100 percentage point of the
+* distribution on n — 2 degrees of freedom. The ¢ and * test
statistics provide the confidence level, while the normal test
statistic provides the coverage—both can be set independently.
Gibbons?® proposed using similar (simultaneous) tolerance inter-
vais to calculate detection limits.

The above discussion and equations are valid, provided the
error assumptons are not violated. Error analysis can be
performed by plotting the residuals (or deviations from the fitted
response) versus the fitted response values. A horizontal band
of residuals indicates constant variance, and unweighted least-
squares regression is appropriate. A funnel shape opening toward
larger values signifies increasing variability with concenfration.
resulting in incorrect estimates of the intercept, slope, and residual
standard deviaton using unweighted least-squares regression.
Nonconstant variance has been previously documented for various
chemical analyses and analytes.>** For instance, this phenom-
enon has long been associated with nuclear analytical measure-
ments as a result of Poisson counting statistics (see Currie?). Also,
Morrison® noted nonconstant variance in analyzing for numerous
elements in moon rocks from the Lunar Analysis Program of the
U.S. National Aeronautics and Space Administration. Finally,
Kurtz et al.®® found similar behavior in analyzing several pesticides
by gas chromatography. In addifion. the [nternational Union of
Pure and Applied Chemistry (TUPAC) has incorporated the issue
of “heteroscedasticity” or nonconstant variance into their recom-
mendadons for calculating imits of detection and quandicadon. ™

(4) Lieberman, G. J.; Miller, R G. Biometnka 1963, 50, 155~ inb.

(5) Miller, R. G. Simultaneous Statistical Inference; McGraw-Hill: New York,
1966.

(6) Gibbons, R. D. Statistical Methods For Groundwater Monitoring, Wiley: New
York, 1994.

(7) Currie, L. A. Anal. Chem. 1968, 40, 586—-593.

(8) Piischel, R. Mikrachim, Acta 1968, 4, 783-301.

(9) Morrison, G. H. Anal. Chem. 1971, 43, 22A—31A

(10) Horwitz, W.; Kamps, L. R.; Boyer. K. W. J. dssoc. Off Anal, Chem. 1980,
63, 13441354,

i11) Horwitz, W. Anal, Chem. 1982, 54, 6TA—T6A.

(12) Oppenheimer, L.; Capizz, T. P.; Weppelman, R M.; Mehta, H. Anal. Chem.
1983, 55, 638—643.

(12) Kurtz, D. A.; Rosenberger, J. L.; Tamayo, G. J. In Trace Residue Analysis,
Chemometric Estimations of Sampling, Amount, and Error, Kurtz, D. A., Ed.;
ACS Symposium Series 284; American Chemical Society: Washington, DC,
1985; Chapter 9.

(14) Rocke, D. M.: Lorenzato, S. Technometrics 1995, 37, 176—184.

(13} Currie, L. A. Pure Appl. Chem. 1995, 67, 16991723,
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_There are two main solutions to the problem of nonconstant
variance: transform the data or perform a weighted least-squares
regression analysis. The objective of a transformation is to rescale
the data so that variability becomes constant, allowing the original
unweighted least-squares regression theory to be used. However,
a variance-stabilizing transformation is often difficult to determine,
Also, if the response values are transformed, linearity of the
calibration curve will likely be compromised, and an approptiate
transformation for the X axis will be required in order to retain
linearity. This can be problematic, and, as several previous
authors have pointed out, 21617 3 hetter solution is to use weighted
least-squares regression.

Weighted Least-Squares Regression Analysis. Weighted
least-squares regression is a modification of ordinary least-squares
that accommodates nonconstant variance. More reliable data
(smaller variability) are given greater emphasis, or weight. Often,
the inverse standard deviation (1/s;) or the inverse variance (1/
s#) at a given concentration will work well as a weight. A major
advantage of this technique is that one does not have to refit
response versus concentraton, since the original data remain
unchanged. However, as was mentioned, it does require modi-
fication to the ordinary least-squares theory. The weighted least-
squares model is

Y=by = b X+ )

The weighted slope is calculated as

_ 9, )
# Su, ®)
where
Sxy, =y wilX, - XY,
’ X, v
=D wXY - M 6
P le‘I
Sex, = > w(X, - X,)°
X
= Y - o
wa
¥ Zwi’Xx '
X, = .
Y ®
and

. Zinf
w vax.

el

9)

The weighted intercept and the predicted response (fitted regres-

(16) Currie, L A In Trace Residue Analysis, Chemometric Estimations of Sampling,
Amount, and Error, Kurz, D. A, Ed.; ACS Symposium Series 284; American
Chemical Sodety: Washington, DC, 1985; Chapter 5.

(17) Owens, K. G.; Bauer, C. F.. Grant. C. L In Detection in Analytical Chemistry,
Importance, Theory, and Pracuce: Currie, L AL Ed.; ACS Symposium Series
261; American Chemucal Society: Washington, DC, 1988; Chapter 10.



sion line) are given by _ﬁ_:. .

e by =T, - bLX, (10)
and
Y= bow + 01X : 11)

and the weighted residual standard deviation is

/ (V. — ¥ )2
Sy = Z_uﬁ_i_’_z_“”)_ (12)

Woairhtad mendictinn intominle amnoand o n-adictad en
CRIgaled DPUCGICa0I NalVaar QTCULL 4 prols e

(V) at concentration X; are calculated as

| 1 ‘ 1 K (X-I _ Xw)z 1/2
=1,= fu—c/z.n—p—ﬂsw[g - 3w, T S } 13)

J

The weighted parameters have replaced the unweighted param-
eters {s, X, and Srx), the sum of the weights has replaced », and
Hl-as2a-p-2 18 the (1 — a/2)100 percentage point of Student’s ¢
distribution on 7 — p — 2 degrees of freedom (where p is the
number of parameters used to model the weights, see below). In
addition, the inverse weight (1/wy) at X, has replaced 1 in the
unweighted equadon. Since variability is not constant with
concentration, the appropriate multiplier for error in future
measurements is s,/w/*, rather than simply s as in the un-
weighted equation.'3

To provide coverage for a given percentage of future measure-
ments, rather than just the next single measurement, tolerance
intervals must be applied. In the weighted case, the tolerance
interval becomes

o L G- X
V'=Y,= Sw{t(l—a/f".n—'_’){ - } -

Zw:‘ ‘ Sx‘xw
/2 1/2
1 n—p—2
= NP|\— (14)
(w}-) ( R ) }

Similarly, the weighted parameters replace the unweighted
parameters, the sum of the weights replaces n, and s./w;'?
replaces s as the multiplier for error in future measurements, the
right-most term.

To this point, all parameters of eqs 13 and 14 can be
determined except for the weight w; at X,, which must be
estimated. This can be achieved by modeling the weights as a
function of concentration. In this study, the weights have been
set equal to the inverse variance, 1/s”. Therefore, w; can be
estimated by modeling the standard deviation (or variance) as a
function of concentration X. The following models of standard
deviation s, will be evaluated: a quadratic model (where p = 3),

s, =ay+a X+ a.X (15)

(18) Caulcutt, R Boddy, R Statistics for Analytical Chemists; Chapman and
Hall: London, 1983.

Relative Frequency

Concentration

Figure 1. Relationship between a blank, the critical level (L), and
the limit of detection (Lo). The distributions overlap at Le with false
positive (a) and false negative (8) error rates.

an exponential model (where p = 2),

PR
°, =

PNy 710N
<

~
x @y a0y

and a two-component model (where p = 2) proposed by Rocke
and Lorenzato! and approximated by

s.=Ja, + a.X° an

Limit of Detecton. A brief review of detection limit theory
is provided here: for a more thorough review, see refs 3, 6, 7.
and 19. Currie’ defined the criical level (L) as “a decision limit
at which one may decide whether or not the result of an analysis
indicates detection”. This level is concerned with the signal or
measured concentration that corresponds to (unreliable) detection.
and results from the hypothesis test A;: X = 0. The critcal ievel
has a specifically defined false positive (type I) error rate (a)—of
1%, for example—but an undefined false negative (type II) error
rate {f). According to Currie, the detection limit (Lp) is the true
concentration “at which a given analytcal procedure may be relied
upon to lead to detecdon”. A second hypothesis test (Hy X =
Lp) at the detecton limit allows the false negative error rate to
be set. A distribution at zero and a distribution at the detection
limit overlap at the critical level with a given « and § (see Figure
1). Thus, when the true concentration is Lp, an instrumment
response indistinguishable from a blank (below L) is rare (e.g.,

%). It should be noted that setting the detection limit at the
critical level incorrectly provides a false negative error rate of 50%.
In other words, half of all measurements with concentration Lp
(or Lc) will result in an instrument response indistinguishable from
a blank.

The critical level and detection limit can be applied to
calibration designs using prediction intervals or tolerance intervals
as shown in Figure 2. Parameters include the critical level in
response units (¥c), equal to the upper interval at zero concentra-
tion; the critical level in concentraton units (L), expressed as

_ YC - b()w

=5 (18)

w

and the detection limit in concentration units (Lp). set toprovide
an appropriate taise negative =rror rate,

For calculating detection and quantification limits, one-sided
prediction and tolerance intervals are mure appropriate than the

(19) Gibbons, R. D. Environ. Ecor ra: 1995

Apalvtical Chersi~ - 25 =+ -5 1 . et 4007 3071



Instrument Response

D
Concentration

Figure 2. Calibration design critical level in response (Yc) and
concentration {Lc) units and limit of detection (Lp) in concentration
units. Includes the calibration line (—) and prediction or tclerance
intervals (- - -).

general two-sided intervals provided above (eqs 2, 3, 13, and 14).
One-sided intervals are calculated using the (1 — a)100 percentage
point of Student’s ¢ distribution, the one-sided P percentile point
of the unit normal distribution, and the (a)100 percentage point
of the y* distribution.

Weighted prediction intervals (one-sided) were applied to the
calculation of a critical level and a detection limit by Oppenheimer
et al.® The critical level in response units is described by

Yo = by, *t 1,1 5 (19)
€™ fow ™ Han—p-2 Wy Zw; - S,
and the detecton limit in concentradon units by
Ly g pmaemS,y, (L, — X)H2
A %‘*vl - Ds:a»)} (20)
lw [ LD L,wf W

Oppenheimer et al. made several conservative assumptions,
resulting in larger estimates of Lp, to simplify these equations
and the subsequent calculations. They set the weight at zero (wn)
and the weight at the detection limit (w1,) equal to 1 (the weight
at the lowest spiking concentration) to circumvent modeling the
weights as a function of concentration; they also performed
calculations with wy = wy, = 91.74, an estimate of the weight at
zero concentration. Also, (Lp — X,)? was replaced by .¥,? to avoid
an iterative solution for Lp.

Currie'® later combined weighted prediction intervals and a
linear model of the standard deviation (s; = @y + ¢w¥) to more
accurately calculate the limit of detection. Since the lowest
standard in this data set exceeded the calculated detection
limit by more than an order of magnitude, the linear model
was sufficient in describing the overall variability. In this
study, data at and below the limit of detection will necessitate
the incorporation of more complex models of the weights
(quadratic, exponential, and twoomponent Rocke and Loren-
zato™) and the iteration of the full equation in order to correctly

_calcula_tg wy and wy,, and to simultaneously solve for the detection

umjt cavim - e .. . -
Onesided weighted tolerance intervals can similarly be applied
to the calculation of the critical level in response units by

3072 Analytical Chemistry, Vol. 69. No. 15, August 1, 1997

¥ 271/2
X"

1
Yo = bo, + sw{t(l—u.n—'l) [‘27}: - Sxx,

1/2 12
1 n—p—2
(‘w_o) N@) (TT_—) } 1)

/Cn—p-Z

and the detection limit in concentration units by

1/2

1 (LD - Xw) 2 +

sw
Ly=Lc+ m{fa—g,n—z) [Zwi + Sex,

1/2
1 n—p—2
— NP|—=55—
(wLD) ( ﬂx;~p—2

12
} 22)

A weighted tolerance interval analysis will also be performed by
calculating wy and w,, and simultaneously solving for the detection
Limit.

Limit of Quantification. The limit of quantfication is used
to decide whether or not the concentration of an analyte can be
reliably determined. It was suggested by Currie’ that the
“determination limit” (Lq) be set at a concentration with sufficiently
small standard deviation to allow for accurate quantification—a
10% relative standard deviation was suggested. Similarly, the U.S.
Environmental Protection Agency has defined the minimum
level (ML) as 3.18 times the method detecton limit (MDL), or
10 times the standard deviation used to calculate the MDL.? This
method is widely used to calculate the limit of quantification;
however, it is based on variability in analyte response at a single
concentration, making it inconsistent in situations of nonconstant
variance. i

Gibbons et al.™ have suggested an alternative to the EPA’s
minimum level: an alternative minimum level, or AML. This
approach defines Yy (the determinadon limit in response units)
as 10 times the standard deviation at the lowest detectable signal
(L:) plus the weighted intercept, or

i

Yy =105 + by, (23)

where si. is the standard deviation at the critical level. Addidon
of the weighted intercept converts from a response deviaton to
an actual response value. The corresponding concentration Ly
can be obtained by

Yy = bo,
Ly=—1—> » : 24

The AML is the concentration that provides an upper bound for
the operationally defined level Ly. The original procedure uses
weighted least-squares to obtain the calibration parameters s,
and by, and standard deviation modeling and a single sample
tolerance interval to simultaneously solve for L¢ and s, to
subsequently obtain Yq. A weighted prediction interval is then
used to calculate the AML. In this work. either the calibration-
based prediction interval (eq 19) or tolerance interval (eq 21)
approach developed earlier will be used to obtain more rigorous
estimates of L, s, and Y. The weighted prediction interval-

(20} Gibbans, R. D.; Coleman, D £.. Maadalone. R. F. Environ. Sci. Technol. In
press,

|
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Table f. PCB Concentiration Ranges

) coﬁcn (ng/mL) concn (ng/mL)

- PCBns® - lowest highest PCBno# lowest highest
1 0.0775 77.450 61 0.0054 5.380
3 0.2047 204,650 65 0.0053 5.270
4 0.0484 48.405 77 0.0089 8.860
14 0.0230 22.960 101 0.0065 6.460
18 0.0128 12.840 128 0.0044 4.395
30 0.0044 4.400 155 0.0051 5.070
31 0.0088 8.800 166 0.0046 4.560
54 0.0117 11.665 180 0.0026 2.580

2 Nymbered according to Ballschmiter and Zell. %

based &ML can then be calculated as

AML=] ~ t(l‘ﬁ-ﬂﬂ%zrgwl’i L1 + (LQ _Xw)fﬂ 1/2
Q- b (Wi S, Sex,

(25)

or the weighted tolerance interval-based AML as

. L g =XV
AML = LQ - b":{f(l‘ﬁ.n—’_’) [S’ w. - Sﬁw v

1/2 /2
L vp|r=2=2) | e
Wi, ﬁx;-;:—’l

EXPERIMENTAL SECTION
Standards. A stock solution containing 16 polychlorinated

biphenyls (PCBs), ranging from congener 1 (monochloro, num-
bered according to Ballschmiter and Zell* ) to congener 130
(heptchloro), was prepared in isooctane (EM Science, Gibbstown,
NT). Concentrations were chosen to produce a similar instrument
response for each congener. Eight standards were prepared by
diluting the stock mixture by factors of 2 (highest concentration),
5, 10, 20, 50, 100, 200, and 2000 (lowest concentration). Table 1
lists the concentration range for each PCB congener. Congener
204 was subsequently added to each standard (at a concentration
of 7.275 ng/mL) to be used as a retention time reference. Seven
replicates were analyzed at each of the eight concentrations.
Samples were run in seven blocks, each block containing one
replicate of each standard. The eight standards within each block
were randomized to eliminate the effect of any systematic error.
Gas Chromatography. The standards were analyzed using
a Hewlett-Packard 5890A gas chromatograph (GC) equipped with
a BNi electron capture detector (ECD). The detector was
maintsined at a temperature of 330 °C, with the flow rate of
makeup gas (Ar/CH,) at 25—230 mL/min. The carrier gas (H»)
velocity was approximately 50 cm/s. A 2 uL injection was
performed in the splitless mode (0.7 min purge delay), with an
injection port temperature of 300 °C. The column was a J&W
Scientific (Folsom, CA) DB-5 capillary column (30 m x 0.25 mm,
0.25 ym film thickness). The oven temperature program was as
follows: initial temperature 90 C, 5 °C/min to 110 °C, 2 °C/min
to 220 °C, 10 °C/min to 300 °C, retained for 25 min at 300 °C.

(21) Ballschmiter, K.: Zell, M. Fresenius Z. Anal. Chem. 1980, 302, 20-31L.

Unweighted Residuals
8

Unweighted Fitted Response

I

Weighted Fitted Response

Figure 3. (Top) Unweighted least-squares residual plot for pPCB
congener 1; the funnel shape indicates nonconstant variance. (Bot-
tom) Weighted least-squares residual plot for PCB congener 1; the
horizontal band of residuals indicates constant variance.

L X

Weighted Residuals

Computations. Statistical analyses were performed using
Minitab program software (Release 9.2). Various macros were
written to facilitate regression analyses and calculation of detection
and quandfication limits using the methods developed above.
Software packages are commercially available that will perform
these computations directly. ==

RESULTS AND DISCUSSION
Response variability increases with concentration for all 16 PCB

congeners. Unweighted least-squares residual plots are similar
to that for congener 1, shown in Figure 3 (top). The funnel shape
opening toward higher concentration signifies increasing variance,
making unweighted least-squares regression inappropriate.
Weighted least-squares regression, where the weights are equal
to the inverse observed variance (w; = 1/s7), improves the residual
plots significantly (see Figure 3. bottom). The horizontal band
of residuals, calculated as w/*(¥; — Y..), indicates constant
variance and a valid analysis.

Table 2 lists the unweighted and weighted leastsquares
regression parameters. The slope is essentially unaffected by the
weighting, while the intercept is moderately affected in several
cases (PCB congeners 31, 61, 77, and 180). The residual standard
deviation, however, is decreased considerably using weighted
least-squares to near unity (s, ~ 1) due to the inverse variance
weighting scheme.!? As a result, the multiplier for error in future
measurements using weighted least-squares (s,/wj/®) becomes
simply s;, the standard deviation at concentration X;. This allows
the width of the weighted prediction and tolerance intervals to
change with concentration, accurately reflecting the actual error
(see Figure 4). This ultimately results in tighter prediction and
tolerance intervals at low concentration; consequently, detection
and quantification limits are significantly lower and more accurate
using weighted least-squares regression.

(22) Gibbons, R D. DETECT; A computer program for computing detection and
quantification limits; Scienusic Somware International: Chicago. 1996,
(23) Gibbons, R D. AML: A comouter program for computing the Allernative

Mintmum Level; Scicntific Somaare stemativnal Chicago. 1996,
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Table 2. Least-Squares Regression Parameters

unweighted weighted

: residual residual
PCB - standard standard
nod n intercept slope deviation intercept slope deviation

1 56 12.2 18.4 88.1 34 19.6 1.0

3 56 -1.3 72 1011 -0.2 7.0 1.0

4 56 25.2 350 1070 2.0 40.5 1.0

14 56 34,7 179.2 2557 -1.3 1961 1.0

18 56 15.0 205.5  165.7 54 2108 1.0

30 54 16.7 548.6 1592 17.8  536.2 1.0

31 56 —14.1 8152 4785 14.9 7483 1.0

54 56 206 2269 1669 7.6  233.9 1.0

61 56 —-48 5802 2358 103 522.2 1.2

65 56 —-43 4255 1540 1.5  403.0 1.0

77 56 -6.6 1509 97.7 9.0 1205 15

101 $6 13.5  360.2 159.0 155 3300 1.4

128 49 -665 689.0 2635 ~24.8  566.5 1.2

155 56 18.7 4458 1503 4.7 469.8 1.0

166 55 —45 5974 2119 1.5 586.2 1.0

180 56 -2.2 6012 118.5 6.1 542.8 1.2

« Numbered according to Ballschmiter and Zell*!

5000

2500

Instrument Response

Concentration (ng/mL)

Figure 4. Weighted least-squares regression analysis for PCB
congener 14. Includes the calibration line (—), weighted prediction
intervals (- - -), and weighted tolerance intervais (+++). The width of
the weighted intervals changes with concentration, accurately rep-
resenting the actual data.

Detection and Quantification Limits. To calculate detection
and quantification limits using weighted predicton and tolerance
intervals, the weight at zero (wy), the weight at the limit of
detection (wi,), and the weight at the limit of determination (wry)
must be estimated. A quadratic model, an exponential model,
and a two-component Rocke and Lorenzato!* model of the standard
deviation as a function of concentration were examined (see Figure
5). In all cases, the quadratic model provides the best overall fit
to the data. In general, the exponential model provides an
overestimate at low and high concentrations and an underestimate
at intermediate concentration, while the opposite is true for the
two-component model.

Table 3 lists the detection timit and AML calculated for each
of the 16 PCB congeners. Values were calculated using weighted
prediction intervals (@ = g = 0.0 and weighted tolerance
intervals (@ = f = 0.01, P = 0.99) with a quadratic model for the
weights. As expected, tolerance interval-based estimates are
larger than corresponding prediction interval-based estimates due
to the increased coverage for a percentage of all future measure-
ments, rather than just the next single measurement. T

For several PCB congeners, the exponential and two-compo-
nent Rocke and Lorenzato models provide fits comparable to that
of the quadratic model. For example, using the exponential madel
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Figure 5. Standard deviation as a function of concentration for PCB
congener 180. Fit using a quadratic model (—), an exponential model
{---), and a two-component Rocke and Lorenzato model (---).

Table 3. Detection Limits and Alternative Minimum
Leveis {ng/mL) Using Weighted Prediction and
Tolerance Intervals and a Quadratic Model for the
Weights

weighted weighted
prediction interval® tolerance interval®
PCB nos# Lo AML Lo AML
1 0.832 2.326 1.339 2757
3 1.810 3.138 2.589 5.867
4 0.384 1.026 0.590 1.202
14 0.200 0.567 0.289 0.649
18 0.067 0.120 0.107 0.225
30 0.139 0.288 0.220 0.470
31 0.061 0.169 0.096 0.200
34 0.159 0.439 0.255 0.522
61 0.142 0.346 0.224 0.409
65 0.047 0.124 0.078 0.151
T 0.413 0.300 0.762 0.985
101 0.107 0.211 0.193 0.268
128 0.204 0.681 0.344 0.398
155 0.037 0.102 10.062 0.123
166 0.066 0.177 0.096 0.203
180 0.077 0.181 0.127 0.220

a Numbered according to Bailschmiter and Zell** ¢ 99% confidence
(iLe.. a =g = 0.01). £ 99% confidence and 9%% coverage (le.a=g=
0.01 and P = 0.99).

for PCB congener 77 results in a prediction interval-based
detection limit of 0.444 ng/mL. a prediction interval-based AML
0f 0.859 ng/mL, a tolerance interval-based detection limit of 0.667
ng/mL, and a tolerance interval-based AML of 0.998 ng/mL
(compared to 0.413, 0.800, 0.762, and 0.989 ng/mL, respectively,
using the quadratic model). Similarly, using the two-component
model for PCB congener 1 results in a prediction interval-based
detection limit of 0.903 ng/mL, a prediction interval-based AML
of 2.490 ng/mlL, a tolerance interval-based detection limif of 1.480
ng/mL, and a tolerance interval-based AML of 2.911 ng/mL
(compared to 0.832, 2.326, 1.339, and 2.757 ng/mL, respectively,
using the quadratic model). For other PCB congeners, the
exponential and two-component models do not compare as well
with the quadratic model.

The authors would like to point out, however, that the quadratic
model does not provide the best fit in all situations. For example,
using the quadratic model can lead to a negative estimate of the
standard deviation at zero concentration. ultimately resulting in a

" negative estimate of the detection and quantification limit. This

result is typically not a problem using exponential or two-
component Rocke and Lorenzato fits. In our experience, none of
the models examined works Sest in all situations. [t is important
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Figure 6. Unweighted least-squares regression analysis for PCB
congener 14. Includes the calibration line (—), unweighted prediction
intervals (- --), and unweighted tolerance intervals (---). The un-

weighted intervals provide a poor fit to the actual data, especiaily at .

low concentration.

to be flexible and to have the ability to apply several models to
ensure calculation of accurate detection and quantfication limit
estimates.

For comparison, the simplifications proposed by Oppenheimer
et al.I2 were evaluated with respect to calculation of the prediction
interval-based detection limit. The factor (X; — X.)? was replaced
by X%, and w; was replaced by the weight at the lowest standard
concentraton. For four of the 16 PCB congeners (54, 61, 65, and
155), this method provides a detection limit that is larger than
the detecton limit calculated using the full equation with a
quadratic model for the weights—a conservative estimate. How-
ever, for the 12 remaining PCB congeners, this method provides
a detection limit that is smaller (generally by about 50%) than the
detection limit calculated with the full equation—a nonconservative
estimate. The most extreme example is PCB congener 3. The
detecton limit calculated using the simplified method is 0.184 ng/
mL. which is about an order of magnitude smaller than 1.810 ng/
mlL. the detection limit calculated using the full equation with a
quadratic model for the weights.

Depending on variability as a function of concentration, as well
as the location of w; with respect to the detection limit, different
choices of w; give detection limits that are closer to the estimates
obtained using the full equation. However, the same relative
choice of w; does not work best in all cases. In additon, retaining
the factor (X; — X,)? in the equations changes the calculated
detection limits by only a few percent. It is evident that using a
single value of w; to avoid an iterative solution can result in
inaccurate detection limits that are not necessarily conservative
estimates.

As a final comparison, unweighted prediction and tolerance
interval-based detection limits were calculated. The unweighted
intervals are wider than the weighted intervals at very low
concentration and provide a poor fit to the actual data (see Figure
6). As a result, applying unweighted least-squares regression in
situations of nonconstant variance generally vields overestmated
detection limits.>**!7 Table 4 lists the unweighted detection limit
for all 16 PCB congeners. Unweighted values range from 3 times
the weighted value (tolerance interval-based detection limit for

PCE congener 128) to nearly 60 times the weighted value

i

ARG

b89072244973a

‘Table 4. Unweighted Detection Limits

Lp (ng/mL Lp (ng/ml)
PCB  prediction tolerance -- PCB  prediction . tolerance
no.% interval® interval® no.d  inverval? interval¢
1 23.242 (28)¢  32.285 (24) 61 1.972 (14) 2.761 (12)
3 68.042 (38)  94.858 (37) 65 1756 (38) 2.448 (31)
4 14.800 (38)  20.570 (3%) 77 3.142 (8) 4.393 (6)
14 6.920 (35) 9.614 (33) 101  2.141 (20) 2.985 (19)
18 3.909 (58) 5433 (51) 128  1.869 (6) 2.690 (3)
30 1.410 (10) 1.972 (9) 155  1.635 (44) 2.277 (37)
31 2.847 (46) 3.964 (41) 166 1.723 (26) 2.422 (25)
54 3.567 (22) 4958 (19) 180 0.957 (13) 1.341 (11)

¢ Numbered according to Ballschmiter and Zell.22 ? 99% confidence
(ie., o= g = 0.01). ¢ 99% confidence and 99% coverage (e,a=8=
0.01 and P = 0.99). ¢ Numbers in parentheses express unweighted
detection limit divided by weighted detection limit.

(prediction interval-based detection limit for PCB congener 18).
This illustrates the importance of performing routine diagnostic
tests (e.g., residual plots) and using weighted least-squares
regression in situations of nonconstant variance.

CONCLUSIONS

Weighted least-squares regression can be used to calculate
limits of detection and quantification by applying a model of
response variability as a function of concentration to calculate the
weight (w) at specific concentrations. Methods that do not
incorporate a model of the weights are dependent on the choice
of w;, much like single-concentration designs are dependent on
the spiking concentraton. In this study, a weighted prediction
interval approach has been used to calculate detection and
quantification limits that can be applied to a limited number of
future analyses. In addition. a weighted tolerance interval equation
has been defined and likewise used to calculate detection and
quantificaion limits. These values are larger than weighted
predicdon interval-based esdmates but can be applied to a large
and potendally unknown number of future analyses. The use of
unweighted least-squares regression in situatons of nonconstant
variance results in significantly overestimated detection and
quantification limits and is strongly discouraged.
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